期中考试冲刺卷一-简单数学之2023-2024学年八年级上册同步讲练(解析版)(人教版)_第1页
期中考试冲刺卷一-简单数学之2023-2024学年八年级上册同步讲练(解析版)(人教版)_第2页
期中考试冲刺卷一-简单数学之2023-2024学年八年级上册同步讲练(解析版)(人教版)_第3页
期中考试冲刺卷一-简单数学之2023-2024学年八年级上册同步讲练(解析版)(人教版)_第4页
期中考试冲刺卷一-简单数学之2023-2024学年八年级上册同步讲练(解析版)(人教版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期中考试冲刺卷一一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·辽宁凌海·期末)下面每组数分别是三根小木棒的长度,用它们不能摆成一个三角形的是()A.5cm,10cm,5cm B.7cm,8cm,9cmC.3cm,4cm,5cm D.6cm,20cm,20cm【答案】A【解析】A、5+5=10,故以这三条线段不能构成三角形,选项正确;B、7+8>9,故以这三条线段能构成三角形,选项错误;C、3+4>5,故以这三条线段能构成三角形,选项错误;D、6+20>20,故以这三条线段可以构成三角形,选项错误,故选A.2.(2020·福建厦门一中初三月考)x7可以表示为().A.x3+x4 B.x3·x4 C.x14÷x2 D.(x3)4【答案】B【解析】解:(A)x3与x4不是同类项,故A不可表示x7;(B)原式=x7,故B可表示x7;(C)原式=x12,故C不可表示x7;(D)原式=x12,故D不可表示x7;故选B.3.(2020·广东揭阳·初一期末)如图,已知△ABC≌△CDE,下列结论中不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D【答案】C【解析】解:由全等三角形的性质可知A、B、D均正确,而∠ACB=∠CED,故C错误.故选择C.4.(2019·广西田东·初二期中)如图所示的图形中,于,线段AE是几个三角形的高().A.3 B.4 C.5 D.6【答案】D【解析】AE分别是、、、、、的高∴线段AE是6个三角形的高故选:D.5.(2020·东莞市松山湖实验中学一模)下列计算正确的是()A.a2+a4=a6 B.a3•a3=a9 C.(a3)2=a6 D.(2ab)2=2a2b2【答案】C【解析】解:A、a2和a4不是同类项,不能合并,故原题计算错误;B、a3•a3=a6,故原题计算错误;C、(a3)2=a6,故原题计算正确;D、(2ab)2=4a2b2,故原题计算错误;故选:C.6.(2019·河北安平·初二期末)已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°【答案】A【解析】解:∵两个三角形全等,

∴∠α的度数是72°.

故选:A.7.(2020·湖南茶陵·初二期末)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS【答案】C【解析】根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选C.8.(2020·山东东明·初一期末)如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118° B.119° C.120° D.121°【答案】C【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.9.(2020·江苏射阳·初三其他)计算的结果是()A. B. C. D.【答案】C【解析】=故选C.10.(2020·广西田东·初三一模)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】A【解析】解:如图由三角形全等,易证N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.11.(2020·江苏南通田家炳中学初二月考)(﹣3x+1)(﹣2x)2等于()A.﹣6x3﹣2x2 B.6x3﹣2x2 C.6x3+2x2 D.﹣12x3+4x2【答案】D【解析】解:(﹣3x+1)(﹣2x)2,=(﹣3x+1)•(4x2),=﹣12x3+4x2.故选:D.12.(2020·全国初二课时练习)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为()A.3 B.4 C.6 D.8【答案】C【解析】解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选C.13.(2020·陕西咸阳·天王学校初二开学考试)若(x+3)(x-5)=x2+mx+n,则()A.m=-2,n=15 B.m=2,n=-15 C.m=2,n=15 D.m=-2,n=-15【答案】D【解析】解:(x+3)(x-5)=x2-5x+3x-15=x2-2x-15=x2+mx+n∴m=-2,n=-15,故选D.14.(2020·全国初二课时练习)如图,若△MNP≌△MEQ,则点Q应是图中的()A.点 B.点 C.点 D.点【答案】D【解析】设每个小正方形的边长为1,∵△MNP≌△MEQ,∴MP=MQ由网格图易证,MP=MD,∴点Q应是图中的点D,故选D.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南岳阳·初二期末)如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.【答案】140°【解析】解:该正九边形内角和=180°×(9-2)=1260°,

则每个内角的度数=.

故答案为:140°.16.(2020·丹阳市珥陵初级中学初一期末)计算:x(1﹣x)=_____.【答案】x﹣x2.【解析】解:原式=x﹣x2.故答案为:x﹣x2.17.(2019·上海市松江区九亭中学初一期中)如图,在与中,点,,分别是,,的中点,若的面积等于,则的面积为_______【答案】.【解析】∵点D,E,F分别是BC,AD,EC的中点,∴AE=DE=AD,EF=CF=CE,BD=DC=BC,∵△ABC的面积等于36,∴S△ABD=S△ACD=S△ABC=18,S△ABE=S△BED=S△ABD=9,S△AEC=S△CDE=S△ACD=9,∴S△BEC=S△BDE+S△CDE=9+9=18,∴S△BEF=S△BCF=S△BEC=×18=9,故答案为:9.18.(2020·湖南涟源·期末)已知,,,则________.【答案】0.【解析】∵2b=6,

∴(2b)2=62.即22b=36.

∵2a+c-2b

=2a×2c÷22b

=3×12÷36

=1,

∴.

故答案为:.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·山东东明·初一期末)如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.(1)求∠B的度数;(2)求∠ACD的度数.【答案】(1)50°;(2)90°;【解析】解:(1)∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°∴∠B=90°﹣∠D=90°﹣40°=50°;(2)∠ACD=∠A+∠B=40°+50°=90°.20.(2020·四川甘孜·初一期末)计算题(1)(2)【答案】(1)4;(2);(3)【解析】(1)解:原式.(2)解:原式.21.(2020·上海市静安区实验中学初二课时练习)已知:P是线段AB的中点,∠1=∠2,PD=PC,求证:∠C=∠D【答案】见解析【解析】∵∠1=∠2,∴∠1+∠CPD=∠2+∠CPD,即∠CPB=∠DPA∵P是线段AB的中点,∴BP=AP,在△APD和△BPC中,,∴△APD≌△BPC,∴∠C=∠D.22.(2020·江苏南通田家炳中学初二月考)先化简,再求值:,其中.【答案】6xy+2y2,6【解析】原式=x2+4xy+4y2-(x2-3xy+xy-3y2)-5y2=x2+4xy+4y2-x2+3xy-xy+3y2-5y2=6xy+2y2把代入原式=6×(-2)×(-)+2(-)2=6+=623.(2020·湖南鹤城·期末)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF,证明:CF=EB.【答案】证明见解析【解析】解:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB,∴CF=EB.24.(2019·山西浑源·初二期中)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.(1)试说明:∠EFD=(∠C﹣∠B);(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.【答案】(1)见详解;(2)成立,证明见详解.【解析】解:(1)∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵∠FEC=∠B+∠BAE,则∠FEC=∠B+90°﹣(∠B+∠C)=90°+(∠B﹣∠C),∵FD⊥EC,∴∠EFD=90°﹣∠FEC,则∠EFD=90°﹣[90°+(∠B﹣∠C)]=(∠C﹣∠B);(2)成立.证明:同(1)可证:∠AEC=90°+(∠B﹣∠C),∴∠DEF=∠AEC=90°+(∠B﹣∠C),∴∠EFD=90°﹣[90°+(∠B﹣∠C)]=(∠C﹣∠B).25.(2020·安徽合肥·初三三模)如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为______________.(2)___________;__________.(3)根据此规律,第个正方形中,,则的值为___________.【答案】(1);(2);;(3)10.【解析】(1)第5个图形中的4个数分别是,,,4个数的和为:.故答案为:;(2)a=(−1)n•2n−1;b=2a=(−1)n•2n,c=b+4=(−1)n•2n+4.故答案为:;.(3)根据规律知道,若,则n为偶数,当n为偶数时,,,,,解得.故答案为:10.26.(2020·黑龙江甘南·初二期末)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.【答案】(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【解析】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论