版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省施甸县第一中学2024届数学高一上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则的图像大致是()A. B.C. D.2.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.3.下列函数中,是幂函数的是()A. B.C. D.4.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.6.不等式的解集是()A.或 B.或C. D.7.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x38.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.9.下列函数是奇函数,且在上单调递增的是()A. B.C. D.10.若曲线与直线始终有交点,则的取值范围是A. B.C. D.11.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值12.函数(且)的图像恒过定点()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数的最大值与最小值之差为,则______14.已知函数,若,则________.15.函数函数的定义域为________________16.已知点是角终边上任一点,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设(1)求a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,求实数k的取值范围18.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.19.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围20.已知函数,(1)设,若是偶函数,求实数的值;(2)设,求函数在区间上的值域;(3)若不等式恒成立,求实数的取值范围21.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.22.已知是定义在上的奇函数,当时,(1)求的解析式;(2)求不等式的解集.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C2、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.3、B【解析】根据幂函数的定义辨析即可【详解】根据幂函数的形式可判断B正确,A为一次函数,C为指数函数,D为对数函数故选:B4、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.5、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题6、A【解析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【详解】由,得,解得或所以原不等式的解集为或故选:A7、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A8、A【解析】由题意可得,从而得到常数k的值.【详解】由题意可得,∴,即∴故选:A9、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.10、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.11、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B12、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.14、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题15、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).16、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值;(2)若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围【详解】(1)∵函数f(x)=ax2-4ax+1+b(a>0)其图象对称轴为直线x=2,函数的定义域为[2,3],值域为[1,4],∴,解得:a=3,b=12;(2)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==若不等式g(2x)-k•2x≥0在x∈[1,2]上恒成立,则k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],当=,即x=1时,()2-2()+1取最小值,故k≤【点睛】本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,是中档题18、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.19、(1)(2)【解析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为20、(1)(2)(3)【解析】(1)根据偶函数定义得,再根据对数运算性质解得实数的值;(2)根据对数运算法则得,再求分式函数值域,即得在区间上的值域(3)设,将不等式化为,再分离变量得且,最后根据基本不等式可得最值,即得实数的取值范围.试题解析:(1)因为是偶函数,所以,则恒成立,所以.(2),因为,所以,所以,则,则,所以,即函数的值域为.(3)由,得,设,则,设若则,由不等式对恒成立,①当,即时,此时恒成立;②当,即时,由解得;所以;若则,则由不等式对恒成立,因为,所以,只需,解得;故实数的取值范围是.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.21、(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服务业沟通培训
- 物业小区虫害防制案例客户表
- 课件背景图教学课件
- 网络课件教学课件
- 颈枕融合术及护理
- 激素药膏与皮肤病
- 计算机导论 教案 单元6 计算机网络技术基础
- 鄂教版小学科学五年级上册《谁吃谁》课件
- 附肢骨骼课件
- 广东省事企业单位选调人员呈报表
- 学校矛盾纠纷排查化解工作方案(3篇)
- 6人小品《没有学习的人不伤心》台词完整版
- 《王戎不取道旁李》课件完美版
- 氯化钠溶液的配置实验报告(共6页)
- 收音机FM指标测试方法3页
- 人教版六年级数学上册总复习教案
- 英格索兰空压机控制器操作说明书
- (完整版)高压开关柜技术协议(10KV配电所10KV高压成套开关柜设备供货)最新(精华版)
- 量子力学公式
- GB∕T 40150-2021 粮油储藏 储粮机械通风均匀性评价方法
- 新苏教版2021-2022四年级科学上册《15生活中的电》教案
评论
0/150
提交评论