




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华义乌市2023年数学九年级第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列方程是一元二次方程的是()A. B. C. D.2.如图,正比例函数与反比例函数的图象交于、两点,其中,则不等式的解集为()A. B.C.或 D.或3.方程组的解的个数为()A.1 B.2 C.3 D.44.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.5.如果将抛物线向右平移1个单位,那么所得新抛物线的顶点坐标是()A. B. C. D.6.在同一个直角坐标系中,一次函数y=ax+c,与二次函数y=ax2+bx+c图像大致为()A. B. C. D.7.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=()A.45° B.50° C.55° D.60°8.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣49.一同学将方程化成了的形式,则m、n的值应为()A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣710.下列成语描述的事件为随机事件的是()A.守株待兔 B.水中捞月 C.瓮中捉鳖 D.水涨船高11.下列各数中,属于无理数的是()A. B. C. D.12.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为()A.(4,3) B.(3,4) C.(5,3) D.(4,4)二、填空题(每题4分,共24分)13.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).14.计算的结果是_______.15.如图示,在中,,,,点在内部,且,连接,则的最小值等于______.16.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.17.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.18.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_______.三、解答题(共78分)19.(8分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.20.(8分)如图,在矩形ABCD中,E是AD上的一点,沿CE将△CDE对折,点D刚好落在AB边的点F上.(1)求证:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.21.(8分)已知锐角△ABC内接于⊙O,OD⊥BC于点D.(1)若∠BAC=60°,⊙O的半径为4,求BC的长;(2)请用无刻度直尺画出△ABC的角平分线AM.(不写作法,保留作图痕迹)22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(10分)有四张背面相同的纸牌A、B、C、D,其正面上方分别画有四个不同的几何图形,下方写有四个不同算式,小明将四张纸牌背面朝上洗匀后摸出一张,将其余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张纸牌的图形是中心对称图形且算式也正确的纸牌的概率.24.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.25.(12分)《厉害了,我的国》是在央视财经频道的纪录片《辉煌中国》的基础上改编而成的电影记录了过去五年以来中国桥、中国路、中国车、中国港、中国网等超级工程的珍贵影像.小明和小红都想去观看这部电影,但是只有一-张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号为的四个球(除编号外都相同),小明从中随机摸出一个球,记下数字后放回,小红再从中摸出一个球,记下数字,若两次数字之和大于则小明获得电影票,若两次数字之和小于则小红获得电影票.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)分别求出小明和小红获得电影票的概率.26.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:选项:是一元一次方程,故不符合题意;选项:只含一个未知数,并且未知数最高次项是2次,是一元二次方程,故符合题意;选项:有两个未知数,不是一元二次方程,故不符合题意;选项:不是整式方程,故不符合题意;综上,只有B正确.故选:B.【点睛】本题考查了一元二次方程的定义,属于基础知识的考查,比较简单.2、D【分析】由题意可求点B坐标,根据图象可求解.【详解】解:∵正比例函数y=x与反比例函数的图象交于A、B两点,其中A(2,2),
∴点B坐标为(-2,-2)
∴由图可知,当x>2或-2<x<0,正比例函数图象在反比例函数的图象的上方,即不等式的解集为x>2或-2<x<0
故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.3、A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:,无解;②当x>0,y<0时,方程组变形得:,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:,此时方程组的解为;④当x<0,y<0时,方程组变形得:,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.4、B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.5、C【分析】根据抛物线的平移规律得出平移后的抛物线的解析式,即可得出答案.【详解】解:由将抛物线y=3x2+2向右平移1个单位,得
y=3(x-1)2+2,
顶点坐标为(1,2),
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.6、D【分析】先分析一次函数,得到a、c的取值范围后,对照二次函数的相关性质是否一致,可得答案.【详解】解:依次分析选项可得:
A、分析一次函数y=ax+c可得,a>0,c>0,二次函数y=ax2+bx+c开口应向上;与图不符.
B、分析一次函数y=ax+c可得,a<0,c>0,二次函数y=ax2+bx+c开口应向下,在y轴上与一次函数交于同一点;与图不符.
C、分析一次函数y=ax+c可得,a<0,c<0,二次函数y=ax2+bx+c开口应向下;与图不符.
D、一次函数y=ax+c和二次函数y=ax2+bx+c常数项相同,在y轴上应交于同一点;分析一次函数y=ax+c可得a<0,二次函数y=ax2+bx+c开口向下;符合题意.
故选:D.【点睛】本题考查一次函数、二次函数的系数与图象的关系,有一定难度,注意分析简单的函数,得到信息后对照复杂的函数.7、B【分析】利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可;【详解】解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°;故选:B.【点睛】本题主要考查了圆周角定理,掌握圆周角定理是解题的关键.8、C【解析】∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a.∴抛物线y=ax2+bx的对称轴为直线.故选C.9、B【解析】先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,∴,解得:故选:B.【点睛】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.10、A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;
B、=2,是有理数,故本选项错误;
C、0,是有理数,故本选项错误;
D、1,是有理数,故本选项错误;
故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.12、A【分析】直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k,进而结合已知得出答案.【详解】∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,∴点P在A′C′上的对应点P′的的坐标为:(4,3).故选:A.【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.二、填空题(每题4分,共24分)13、②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.14、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.15、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小,构建圆,利用勾股定理,即可得解.【详解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P的轨迹是以AB为弦,圆周角为120°的圆弧上,如图所示,当点C、O、P在同一直线上时,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案为.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.16、点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.17、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:
∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),
∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.18、【分析】根据抛物线的解析式求得A、B、C的坐标,进而求得AB、BC、AC的长,根据待定系数法求得直线BC的解析式,作PN⊥BC,垂足为N.先证明△PNE∽△BOC,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△AFC,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值.【详解】∵抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,∴A(﹣1,0),B(9,0),令x=0,则y=1,∴C(0,1),∴BC,设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=1,∴直线BC的解析式为y=﹣x+1.设点P的横坐标为m,则纵坐标为﹣(m+1)(m﹣9),点E(m,﹣m+1),∴PE=﹣(m+1)(m﹣9)﹣(﹣m+1)=﹣m2+1m.作PN⊥BC,垂足为N.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴===.∴PN=PE=(-m2+1m).∵AB2=(9+1)2=100,AC2=12+12=10,BC2=90,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△AFC.∴===﹣m2+m=﹣(m﹣)2+.∵,∴当m时,的最大值为.故答案为:.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标特征、一次函数的解析式、等腰三角形的性质、勾股定理的应用以及相似三角形的证明与性质,求得与m的函数关系式是解题的关键.三、解答题(共78分)19、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【分析】(1)令y=0可求得相应方程的两根,则可求得A、B的坐标;(2)可先求得P点坐标,则可求得点E到AB的距离,可求得E点纵坐标,再代入抛物线解析式可求得E点坐标.【详解】(1)令y=0,则x2+x0,解得:x=﹣3或x=1,∴A(﹣3,0),B(1,0);(2)存在.理由如下:∵yx2+x(x+1)2﹣2,∴P(﹣1,﹣2).∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,①当点E在x轴下方时,则E与P重合,此时E(﹣1,﹣2);②当点E在x轴上方时,则可设E(a,2),∴a2+a2,解得:a=﹣1﹣2或a=﹣1+2,∴E(﹣1﹣2,2)或E(﹣1+2,2).综上所述:存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【点睛】本题考查了二次函数的性质及与坐标轴的交点,分别求得A、B、P的坐标是解答本题的关键.20、(1)证明见解析;(2)【分析】(1)由矩形的性质及一线三等角得出∠A=∠B,∠AEF=∠BFC,从而可证得结论;(2)矩形的性质及沿CE将△CDE对折,可求得CD、AD及CF的长;在Rt△BCF中,由勾股定理得出BF的长,从而可得AF的长;由△AEF∽△BFC可写出比例式,从而可求得AE的长,进而得出DE的长;最后由正切函数的定义可求得答案.【详解】(1)∵在矩形ABCD中,沿CE将△CDE对折,点D刚好落在AB边的点F上∴△CDE≌△CFE∴∠EFC=∠D=90°∴∠AFE+∠BFC=90°∵∠A=90°∴∠AEF+∠AFE=90°∴∠AEF=∠BFC又∵∠A=∠B∴△AEF∽△BFC;(2)∵四边形ABCD为矩形,AB=20cm,BC=16cm∴CD=20cm,AD=16cm∵△CDE≌△CFE∴CF=CD=20cm在Rt△BCF中,由勾股定理得:BF==12cm∴AF=AB﹣BF=8cm∵△AEF∽△BFC∴∴∴AE=6∴DE=AD-AE=16-6=10cm∴在Rt△DCE中,tan∠DCE=.【点睛】本题考查了全等三角形、矩形、相似三角形、直角三角形两锐角互余、勾股定理、三角函数的知识;解题的关键是熟练掌握全等三角形、矩形、相似三角形、勾股定理、三角函数的性质,从而完成求解.21、(1);(2)见解析【分析】(1)连接OB、OC,得到,然后根据垂径定理即可求解BC的长;(2)延长OD交圆于E点,连接AE,根据垂径定理得到,即,AE即为所求.【详解】(1)连接OB、OC,∴∵OD⊥BC∴BD=CD,且∵OB=4∴0D=2,BD=∴BC=故答案为;(2)如图所示,延长OD交⊙O于点E,连接AE交BC于点M,AM即为所求根据垂径定理得到,即,所以AE为的角平分线.【点睛】本题考查了垂径定理,同弧所对圆周角是圆心角的一半,熟练掌握圆部分的定理和相关性质是解决本题的关键.22、y=﹣10x2+1600x﹣48000;80元时,最大利润为16000元.【解析】试题分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润试题解析:(1)S=y(x﹣20)=(x﹣40)(﹣10x+1)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.考点:二次函数的应用23、(1)详见解析;(2)【分析】(1)分别用树状图和列表法表示所有可能的情况;(2)既是中心对称图形,算式也正确的有C、D,然后根据(1)中的树状图或列表得出概率.【详解】解:(1)树状图:图中共有12种不同结果.列表:表中共有12种不同结果(2)∵在四张纸牌中,图形是中心对称图形且算式正确的只有C,D两张∴所求的概率为.【点睛】本题考查求解概率,列表法和树状图法是常考的两种方法,需要熟练掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年其他职业资格考试金融学真题解析与押题预测
- 北京市丰台区2019届高三物理3月综合练习(一模)试卷(含解析)
- 2025年韩语TOPIK高级6级写作突破:议论文写作技巧精讲试卷
- 六西格玛绿带流程改善案例
- 2025年乡村医生农村妇幼保健知识乡村医疗人才培养策略试题
- 2025年注册会计师CPA经济法模拟试卷(公司法与合同法)实战演练试题
- 病例康复治疗汇报
- 高中化学鲁科版 (2019)选择性必修2第3节 元素性质及其变化规律综合训练题
- 2025年考研数学(三)模拟冲刺卷:解析技巧实战演练冲刺高分
- 2025年人力资源管理师专业技能考核试卷:人力资源战略规划与实施
- 北京2025年国家大剧院招聘24名专业技术人员笔试历年参考题库附带答案详解
- 2024建安杯信息通信建设行业安全竞赛题库及答案【三份】
- 2025年信息系统管理知识考试试题及答案
- 中介股东合同范例
- 马法理学试题及答案
- 2025年全国保密教育线上培训考试试题库附完整答案(夺冠系列)含答案详解
- 合伙人协议书模板
- 2025年下半年扬州现代农业生态环境投资发展集团公开招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年中考第一次模拟考试卷:生物(成都卷)解析版
- 量子计算中的量子比特稳定性研究-全面剖析
- 构建健全企业资金体系
评论
0/150
提交评论