![浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题含解析_第1页](http://file4.renrendoc.com/view10/M01/16/09/wKhkGWWokjmAbjObAAGhjI74d3g381.jpg)
![浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题含解析_第2页](http://file4.renrendoc.com/view10/M01/16/09/wKhkGWWokjmAbjObAAGhjI74d3g3812.jpg)
![浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题含解析_第3页](http://file4.renrendoc.com/view10/M01/16/09/wKhkGWWokjmAbjObAAGhjI74d3g3813.jpg)
![浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题含解析_第4页](http://file4.renrendoc.com/view10/M01/16/09/wKhkGWWokjmAbjObAAGhjI74d3g3814.jpg)
![浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题含解析_第5页](http://file4.renrendoc.com/view10/M01/16/09/wKhkGWWokjmAbjObAAGhjI74d3g3815.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省义乌市四校2023年数学九年级第一学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等2.如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A. B. C. D.3.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>34.如图,正方形的四个顶点在半径为的大圆圆周上,四条边都与小圆都相切,过圆心,且,则图中阴影部分的面积是()A. B. C. D.5.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.6.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米7.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=8.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°9.给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③10.如图,在中,,,则的值是()A. B.1 C. D.11.下列事件是必然事件的是()A.打开电视播放建国70周年国庆阅兵式B.任意翻开初中数学书一页,内容是实数练习C.去领奖的三位同学中,其中有两位性别相同D.食用保健品后长生不老12.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能确定二、填空题(每题4分,共24分)13.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.14.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.15.小强同学从,,,这四个数中任选一个数,满足不等式的概率是__________.16.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.17.在△ABC中,∠ABC=30°,AB=,AC=1,则∠ACB的度数为____________.18.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为___________三、解答题(共78分)19.(8分)如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.20.(8分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.(1)用列表法或树形图表示出的所用可能出现的结果;(2)求甲、乙、丙三名学生在同一场地进行训练的概率;(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.21.(8分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.22.(10分)一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.23.(10分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.24.(10分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?25.(12分)已知关于x的方程x2-(m+3)x+m+1=1.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.26.解不等式组,并把解集在数轴上表示出来:
参考答案一、选择题(每题4分,共48分)1、D【解析】A、明天最高气温是随机的,故A选项错误;B、任意买一张动车票,座位刚好挨着窗口是随机的,故B选项错误;C、掷骰子两面有一次正面朝上是随机的,故C选项错误;D、对顶角一定相等,所以是真命题,故D选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D.【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.2、D【分析】根据旋转变换的性质求出、,根据勾股定理计算即可.【详解】解:由旋转变换的性质可知,,∴正方形的面积=四边形的面积,∴,,∴,,∴.故选D.【点睛】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.3、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.4、C【分析】由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一,即可求解.【详解】解:由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一.故阴影部分的面积=.故选:C.【点睛】本题利用了圆是中心对称图形,圆面积公式及概率的计算公式求解,熟练掌握公式是本题的解题关键.5、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知,即,
解得AM=5m.
则小明的影子AM的长为5米.
故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.7、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.8、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.9、D【解析】分别根据一次函数、二次函数及反比例函数的增减性进行解答即可【详解】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;
②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;
③∵y=(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;
④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.
故选D.【点睛】本题考查的是反比例函数的性质,熟知一次函数、二次函数及反比例函数的增减性是解答此题的关键.10、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【详解】∵,∴,∴,∴,故选:A.【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.11、C【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A.打开电视播放建国70周年国庆阅兵式是随机事件,故不符合题意;B.任意翻开初中数学书一页,内容是实数练习是随机事件,故不符合题意;C.去领奖的三位同学中,其中有两位性别相同是必然事件,符合题意;D.食用保健品后长生不老是不可能事件,故不符合题意;故选C.【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.12、B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得
Rt△ABC∽Rt△A′B′C′,
∠A=∠A′,sinA=sinA′
故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.二、填空题(每题4分,共24分)13、1【分析】设共有x个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:,把相关数值代入求正数解即可.【详解】设共有x个飞机场.,解得,(不合题意,舍去),故答案为:1.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.14、1或4或2.1.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=1-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,=∴,解得:x=2.1;②、当△APD∽△PBC时,=,即=,解得:x=1或x=4,综上所述DP=1或4或2.1【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.15、【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.【详解】解:在0,1,2,3这四个数中,满足不等式x+1<2的中只有0一个数,
所以满足不等式x+1<2的概率是.故答案是:.【点睛】本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.16、1.【分析】设盒子内白色乒乓球的个数为x,根据摸到白色乒乓球的概率为列出关于x的方程,解之可得.【详解】解:设盒子内白色乒乓球的个数为,根据题意,得:,解得:,经检验:是原分式方程的解,∴盒子内白色乒乓球的个数为1,故答案为1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A的概率事件A可能出现的结果数:所有可能出现的结果数.17、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的长,解直角三角形求出∠ACD,即可求出答案.【详解】如图,作AD⊥BC于D,如图1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如图2,同理可得∠ACD=60°,∴∠ACB=120°.故答案为60°或120°.【点睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解.18、【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°−30°=56°,∴∠ACB=×56°=28°.故答案为:28°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.三、解答题(共78分)19、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5个满足条件的P点,尺规作图见解析【分析】(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,则CM+BM=C'M+BM=BC最小;求出BC'的直线解析式为y=x+1,即可求M点;(3)根据等腰三角形腰的情况分类讨论,然后分别尺规作图即可.【详解】解:(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,根据两点之间线段最短,则CM+BM=C'M+BM=C'B最小,∵C(0,6),∴C'(5,6),设直线BC'的解析式为y=kx+b将B(﹣1,0)和C'(5,6)代入解析式,得解得:∴直线BC'的解析式为y=x+1,将x=代入,解得y=∴M(,);(3)存在5个满足条件的P点;尺规作图如下:①若CB=CP时,以C为原点,BC的长为半径作圆,交抛物线与点P,如图1所示,此时点P有两种情况;②若BC=BP时,以B为原点,BC的长为半径作圆,交抛物线与点P,如图2所示,此时点P即为所求;③若BP=CP,则点P在BC的中垂线上,作BC的中垂线,交抛物线与点P,如图3所示,此时点P有两种情况;故存在5个满足条件的P点.【点睛】此题考查的是求二次函数的解析式、求两线段之和的最小值和尺规作图,掌握用待定系数法求二次函数的解析式、两点之间线段最短和用尺规作图作等腰三角形是解决此题的关键.20、(1)共有8种可能;(2);(3)【分析】(1)用树状图分3次实验列举出所有情况即可;
(2)看3人在同一场地进行训练的情况数占总情况数的多少即可;
(3)看至少有两人在处场地进行训练的情况数占总情况数的多少即可.【详解】(1)由上树状图可知甲、乙、丙三名学生进行体育训练共有8种可能,(2)所有出现情况等可能,其中甲、乙、丙三名学生在同一场地进行训练有2种可能并把它记为事件A,则P(A)=(3)其中甲、乙、1丙三名学生中至少有两人在B处场地进行训练有4种可能并把它记为事件B,则P(B)=【点睛】此题考查列表法与画树状图法,解题关键在于掌握概率=所求情况数与总情况数之比.21、(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据,利用两角分别相等的两个三角形相似即可证得结果;(2)利用相似三角形对应边成比例结合等腰直角三角形的性质可得,,,从而求得结果;(3)根据两角分别相等的两个三角形相似,可证得,求得,由可得,从而证得结论.【详解】(1)∵,,∴又,∴∴又∵,∴(2)∵∴在中,,∴∴,∴(3)如图,过点作,,交、于点,,∴,,,∵∴,∴,又∵∴,∴,∴,即,∴∵,∴.∴∴.即:.【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.22、4cm【解析】试题分析:设剪掉的正方形纸片的边长为xcm,则围成的长方体纸盒的底面长是(32-2x)cm,宽是(32-2x)cm,根据底面积等于1cm2列方程求解.解:设剪掉的正方形纸片的边长为xcm.由题意,得(32-2x)(22-2x)=1.整理,得x2-25x+84=2.解方程,得,(不符合题意,舍去).答:剪掉的正方形的边长为4cm.23、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【点睛】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形,掌握菱形的定义及性质、平行线、角平行线和等腰三角形的关系和用锐角三角函数解直角三角形是解决此题的关键.24、(1)y=-x+170;(2)W=﹣x2+260x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国天然生漆市场调查研究报告
- 2025年中国内饰件市场调查研究报告
- 2025年舞厅效果灯项目可行性研究报告
- 2025至2031年中国对乙酰氨基水杨酸甲酯行业投资前景及策略咨询研究报告
- 2025至2031年中国啤酒过滤耗材行业投资前景及策略咨询研究报告
- 2025年全方位超短网兜项目可行性研究报告
- 2025至2030年防水透湿面料项目投资价值分析报告
- 2025至2030年红色氧化汞项目投资价值分析报告
- 2025至2030年植绒吸塑罩项目投资价值分析报告
- 2025至2030年指针温度调节仪项目投资价值分析报告
- 方志敏《可爱的中国》全文阅读
- 2024年广西区公务员录用考试《行测》真题及答案解析
- DB12-T 3034-2023 建筑消防设施检测服务规范
- 销售人员岗位职责培训
- 助理医师医院协议书(2篇)
- 短暂性脑缺血发作
- 父亲归来那一天(2022年四川广元中考语文试卷记叙文阅读题及答案)
- 小学数学五年级上册奥数应用题100道(含答案)
- 工业机器人编程语言:Epson RC+ 基本指令集教程
- 2024年同等学力申硕统考英语卷
- 2023.05.06-广东省建筑施工安全生产隐患识别图集(高处作业吊篮工程部分)
评论
0/150
提交评论