




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市余姚市2023-2024学年八年级数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+22.下列平面图形中,不是轴对称图形的是()A. B. C. D.3.用反证法证明命题:“在△ABC中,∠A、∠B对边分别是a、b,若∠A>∠B,则a>b”时第一步应假设().A.a<b B.a=b C.a≥b D.a≤b4.下列因式分解正确的是()A. B.C. D.5.下列图形:线段、角、三角形、四边形,等边三角形、等腰三角形、正五边形、正六边形中,是轴对称图形的有()个A.5 B.6 C.7 D.86.已知实数a满足,那么的值是()A.2005 B.2006 C.2007 D.20087.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A. B. C. D.8.下列从左到右的变形,属于分解因式的是()A. B. C. D.9.下列哪一组数是勾股数()A.9,12,13 B.8,15,17 C.,3, D.12,18,2210.如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A. B. C. D.11.下列图形中,是轴对称图形且只有三条对称轴的是()A. B. C. D.12.的值是()A.16 B.2 C. D.二、填空题(每题4分,共24分)13.对于任意不相等的两个实数a,b(a>b)定义一种新运算a※b=,如3※2=,那么12※4=______14.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.15.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.16.如图,中,、的平分线交于点,,则________.17.在等腰三角形ABC中,∠A=110°,则∠B=_______.18.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b、c,若a+b-c=1.s表示Rt△ABC的面积,l表示Rt△ABC的周长,则________.三、解答题(共78分)19.(8分)第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.20.(8分)计算﹣2()21.(8分)如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.22.(10分)如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.23.(10分)画图(1)请你把先向右平移3格得到,再把绕点顺时针旋转得到.(2)在数轴上画出表示的点.24.(10分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.25.(12分)如图,在中,.(1)用尺规作图作的平分线,交于;(保留作图痕迹,不要求写作法和证明)(2)若,,求的面积.26.为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.
参考答案一、选择题(每题4分,共48分)1、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.2、A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.3、D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判断即可.【详解】解:用反证法证明,“在中,、对边是a、b,若,则”
第一步应假设,
故选:D.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4、C【分析】分别利用公式法和提公因式法对各选项进行判断即可.【详解】解:A.无法分解因式,故此选项错误;B.,故此选项错误;C.,故此选项正确;D.,故此选项错误.故选:C.【点睛】本题主要考查了公式法以及提取公因式法分解因式,一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.5、B【分析】根据轴对称图形的定义判断即可.【详解】∵轴对称图形是:线段、角、等边三角形、等腰三角形、正五边形、正六边形共6个;故答案为:B.【点睛】本题考查了轴对称图形的定义,熟练掌握其定义是解题的关键.6、C【分析】先根据二次根式有意义的条件求出a的取值范围,然后去绝对值符号化简,再两边平方求出的值.【详解】∵a-1≥0,∴a≥1,∴可化为,∴,∴a-1=20062,∴=1.故选C.【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a的取值范围是解答本题的关键.7、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.8、C【解析】试题解析:A.右边不是整式积是形式,故本选项错误;B.不是因式分解,故本选项错误;C.是因式分解,故本选项正确;D.不是因式分解,故本选项错误.故选C.9、B【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵92+122≠132,∴此选项不符合题意;B、∵152+82=172,∴此选项符合题意;C、∵和不是正整数,此选项不符合题意;D、∵122+182≠222,∴此选项不符合题意;故选:B.【点睛】此题考查的是勾股数的判断,掌握勾股数的定义是解决此题的关键.10、B【解析】利用平行线的性质以及折叠的性质,即可得到∠A1+∠A1DB=90°,即AB⊥CE,再根据勾股定理可得最后利用面积法得出可得进而依据A1C=AC=4,即可得到【详解】∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,∴∵∴又∵A1C=AC=4,∴故选B.【点睛】本题主要考查了折叠问题以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是得到CE⊥AB以及面积法的运用.11、C【解析】首先确定轴对称图形,再根据对称轴的概念,确定对称轴的条数.【详解】解:A、不是轴对称图形;B、是轴对称图形,有2条对称轴;C、是轴对称图形,有3条对称轴;D、是轴对称图形,有4条对称轴;故选:C.【点睛】掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.能够熟练说出轴对称图形的对称轴条数.12、B【分析】根据算术平方根的定义求值即可.【详解】=1.故选:B.【点睛】本题考查算术平方根,属于基础题型.二、填空题(每题4分,共24分)13、【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4=故答案为:【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.14、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【点睛】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.15、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.16、72°【分析】先根据三角形内角和定理求出∠1+∠2的度数,再由角平分线的性质得出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.【详解】解:∵在△BPC中,∠BPC=126°,
∴∠1+∠2=180°-∠BPC=180°-126°=54°,
∵BP、CP分别是∠ABC和∠ACB的角平分线,
∴∠ABC=2∠1,∠ACB=2∠2,
∴∠ABC+∠ACB=2∠1+2∠2=2(∠1+∠2)=2×54°=108°,
∴在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-108°=72°.
故答案为:72°.【点睛】此题考查了三角形的内角和定理,平分线性质.运用整体思想求出∠ABC+∠ACB=2(∠1+∠2)是解题的关键.17、350【分析】根据钝角只能是顶角和等腰三角形的性质即可求出底角.【详解】∵在等腰三角形中,∠A=110°>90°,∴∠A为顶角,∴∠B=故答案为:35°.【点睛】本题考查等腰三角形的性质,要注意钝角只能是等腰三角形的顶角.18、1【分析】已知a+b-c=1,△ABC是直角三角形,将s=,l=a+b+c用含c的代数式表示出来,再求解即可.【详解】∵a+b-c=1∴a+b=1+c∴(a+b)2=a2+2ab+b2=c2+8c+16又∵a2+b2=c2∴2ab=8c+16∴s==2c+1l=a+b+c=2c+1∴1故答案为:1【点睛】本题考查了勾股定理的应用,完全平方式的简单运算,直角三角形面积和周长计算方法.三、解答题(共78分)19、(1)9,9;(2)乙运动员第5次的成绩是8环;(3)应选乙运动员去参加比赛,理由见解析.【解析】(1)根据众数和中位数的定义分别进行解答即可得出答案;
(2)先算出甲运动员5次的总成绩,再根据甲、乙两名运动员前5箭的平均成绩相同,即可求出乙运动员第5次的成绩;
(3)根据方差公式先求出甲和乙的方差,再根据方差的意义即可得出答案.【详解】(1)∵9环出现了两次,出现的次数最多,则甲运动员前5箭射击成绩的众数是9环;
把这些数从小到大排列为:5,7,9,9,10,最中间的数是9,则中位数是9环;
故答案为9,9;(2),∵甲、乙两名运动员前5箭的平均成绩相同,∴.解得.(或)∴乙运动员第5次的成绩是8环.(3)应选乙运动员去参加比赛.理由:∵(环),(环),∴,.∵,∴应选乙运动员去参加比赛.【点睛】本题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.20、1【解析】根据二次根式的混合运算的法则计算即可.【详解】原式=2=1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.21、(1)AC=BD,直线相交成90°;(2)结论成立,详见解析.【分析】(1)由图可知线段AC,BD相等,且直线AC,BD相交成90°角.(2)以上关系仍成立.延长CA交BD于点E,根据勾股定理可证得AC=BD,即可证明△AOC≌△BOD,根据两全等三角形对应角的关系,即可证明CE⊥BD.【详解】(1)因为∆和△是等腰直角三角形,所以OC=OD,OA=OB,∠O=90°所以OC-OA=OD-OB,所以AC=BD,直线相交成90°;
(2)(1)中的两个结论仍然成立,理由如下:
∵∆和∆OCD都是等腰直角三角形
∴OA=OB,OC=OD,∠COD=∠AOB=90°∴△AOC≌△BOD
∴AC=BD,∠ACO=∠BDO
延长CA交BD于点E.
∵∠DBO+∠BDO=90°∴∠DBO+∠ACO=90°
∴∠CEB=90°即:直线AC,BD相交成90度角.【点睛】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、旋转的相关知识点,熟练掌握全等三角形的判定方法是解题的关键.22、(1)-3;(2)(i)y=±x+2;(ⅱ)点E的坐标为:(,)或(,).【分析】(1)将点A的坐标代入一次函数y=kx+6中,即可解得k的值;(2)(i)先求出△BCO的面积,根据直线l把△BOC分成面积比为1:2的两部得出△CDE的面积,根据三角形面积公式得出E的横坐标,将横坐标代入y=kx+6即可得到E的坐标,点E的坐标代入直线l表达式,即可求出直线l表达式;(ⅱ)设点E(m,﹣3m+6),根据两点间的距离公式列出方程,解得点E的坐标.【详解】(1)将点A的坐标代入一次函数y=kx+6并解得:k=﹣3;(2)一次函数y=﹣3x+6分别与x轴,y轴相交于B,C两点,则点B、C的坐标分别为:(2,0)、(0,6);(i)S△BCO=OB×CO=2×6=6,直线l把△BOC分成面积比为1:2的两部分,则S△CDE=2或4,而S△CDE=×CD×=4×=2或4,则=1或2,故点E(1,3)或(2,0),将点E的坐标代入直线l表达式并解得:直线l的表达式为:y=±x+2;(ⅱ)设点E(m,﹣3m+6),而点A、D的坐标分别为:(1,3)、(0,2),则AE2=(m﹣1)2+(3﹣3m)2,AD2=2,ED2=m2+(4﹣3m)2,当AE=AD时,(m﹣1)2+(3﹣3m)2=2,解得:m=(不合题意值已舍去);当AE=ED时,同理可得:m=;综上,点E的坐标为:(,)或(,).【点睛】本题考查了直线解析式的综合问题,掌握直线解析式的解法、三角形面积公式、两点的距离公式、等腰三角形的性质、一元二次方程的解法是解题的关键.23、(1)图见解析;(2)图见解析.【分析】(1)先根据平移的性质画出,再根据旋转的性质画出点,然后顺次连接点即可得;(2)先将表示3的点记为点A,将表示2的点记为点B,将原点记为点O,再过点A作数轴的垂线,然后以点A为圆心、AB长为半径画弧,交AC于点D,最后连接OD,以点O为圆心、OD长为半径画弧,在原点右侧交数轴于点P即可得.【详解】(1)先根据平移的性质画出,再根据旋转的性质画出点,然后顺次连接点即可得,如图所示:(2)先将表示3的点记为点A,将表示2的点记为点B,将原点记为点O,再过点A作数轴的垂线,然后以点A为圆心、AB长为半径画弧,交AC于点D,最后连接OD,以点O为圆心、OD长为半径画弧,在原点右侧交数轴于点P,则点P即为所作,如图所示:【点睛】本题考查了平移与旋转作图、勾股定理的应用,熟练掌握平移和旋转的性质、勾股定理是解题关键.24、(1)见解析;(2)存在,当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【分析】(1)由旋转的性质可得CD=CE,∠DCA=∠ECB,由等边三角形的判定可得结论;(2)分四种情况,由旋转的性质和直角三角形的性质可求解.【详解】(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)解:存在,①当0≤t<6s时,由旋转可知,,,若,由(1)可知,△CDE是等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;②当6<t<1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店师徒结对协议书
- 表演培训转让协议书
- 门面认购民间协议书
- 避险搬迁补偿协议书
- 停车场租户合同协议书
- 合伙包工程合同协议书
- 便利店合作合同协议书
- Brand KPIs for second-hand apparel online shops I Need Brechó in Brazil-外文版培训课件(2025.2)
- 0万离婚补偿协议书
- Brand KPIs for shoes Barker in the United Kingdom-外文版培训课件(2025.2)
- 人教版英语八下Unit8 Have you read Treasure Island yet Section A 3a-3c课件
- 工程师施工现场安全管理实务试题及答案
- 初中地理澳大利亚(第2课时)课件+-2024-2025学年地理人教版(2024)七年级下册
- 生物质转化技术原理考核试卷
- 调味品中微生物安全-全面剖析
- 审计报告模板
- 2025年全国燃气安全生产管理主要负责人考试笔试试题(500题)附答案
- TCECS24-2020钢结构防火涂料应用技术规程
- 店长入股协议书范本
- 夏季高温季节施工应急预案
- 餐饮厨房燃气设备安全操作与维护
评论
0/150
提交评论