浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题含解析_第1页
浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题含解析_第2页
浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题含解析_第3页
浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题含解析_第4页
浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市皋埠镇中学2023年数学九上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列方程中,是一元二次方程的是()A. B.C. D.2.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为()A.米 B.米 C.米 D.米3.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:84.若一元二次方程ax2+bx+c=0的一个根为﹣1,则()A.a+b+c=0B.a﹣b+c=0C.﹣a﹣b+c=0D.﹣a+b+c=05.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是A.相离 B.相切 C.相交 D.无法判断6.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A. B. C. D.17.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米8.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)9.如图,是的外接圆,是直径.若,则等于()A. B. C. D.10.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=()A.1 B.2 C.4 D.811.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=231712.以为顶点的二次函数是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.14.若是方程的一个根,则代数式的值是______.15.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.16.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.17.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.18.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.三、解答题(共78分)19.(8分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为,看旗杆底部的俯角是为,教学楼与旗杆的水平距离是,旗杆有多高(结果保留整数)?(已知,,,,)20.(8分)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.21.(8分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.抛物线的解析式为.直线的解析式为;若直线与抛物线只有一个公共点,求直线的解析式;设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.22.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)23.(10分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度.24.(10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?25.(12分)如图,抛物线交轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为.(1)求此抛物线的表达式;(2)过点作轴,垂足为点,交于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;(3)过点作,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?26.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据一元二次方程的定义求解,一元二次方程必须满足两个条件:①未知数的最高次数是2;②二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、是分式方程,故A不符合题意;

B、是二元二次方程,故B不符合题意;

C、是一元二次方程,故C符合题意;

D、是二元二次方程,故D不符合题意;

故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是(且a≠1).特别要注意a≠1的条件,这是在做题过程中容易忽视的知识点.2、D【分析】根据题意B、C所在的双曲线为反比例函数,B点的坐标已知为B(2,5),代入即可求出反比例函数的解析式:y=,C(x,1)代入y=中,求出C点横坐标为10,可以得出DE=OD-OE即可求出答案.【详解】解:设B、C所在的反比例函数为y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函数式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.3、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A作AF⊥OB于F,如图所示:∵A(1,1),B(6,0),∴AF=1,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴==,∵OE=,∴BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则,,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴,即AC:AD=2:1.故选:B.【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.4、B【解析】直接把x=−1代入方程就可以确定a,b,c的关系.【详解】∵x=−1是方程的解,∴把x=−1代入方程有:a−b+c=1.故选:B.【点睛】本题考查的是一元二次方程的解,把方程的解代入方程,就可以确定a,b,c的值.5、A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d与r的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d>r时,直线与圆相离;②当d=r时,直线与圆相切;③当d<r时,直线与圆相交.【详解】∵的解为x=4或x=-1,∴r=4,∵4<6,即r<d,∴直线和⊙O的位置关系是相离.故选A.【点睛】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.6、C【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是.故选C.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.8、C【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.9、C【解析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=

∠BOC=40°.【详解】∵∠BOC=80°,

∴∠A=∠BOC=40°.

故选C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、B【分析】利用反比例函数k的几何意义判断即可.【详解】解:根据题意得:S△AOB=×4=2,故选:B.【点睛】本题考查了反比例函数系数k的几何意义,关键是熟练掌握“在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|.”11、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.12、C【解析】若二次函数的表达式为,则其顶点坐标为(a,b).【详解】解:当顶点为时,二次函数表达式可写成:,故选择C.【点睛】理解二次函数解析式中顶点式的含义.二、填空题(每题4分,共24分)13、(2,0),(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标.【详解】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,

OC=OB1+B1C=2+a,A2(2+a,a).

∵点A2在双曲线上,

∴(2+a)•a=,

解得a=-1,或a=--1(舍去),

∴OB2=OB1+2B1C=2+2-2=2,

∴点B2的坐标为(2,0);

作A3D⊥x轴于点D,设B2D=b,则A3D=b,

OD=OB2+B2D=2+b,A2(2+b,b).

∵点A3在双曲线y=(x>0)上,

∴(2+b)•b=,

解得b=-+,或b=--(舍去),

∴OB3=OB2+2B2D=2-2+2=2,

∴点B3的坐标为(2,0);

同理可得点B4的坐标为(2,0)即(4,0);

以此类推…,

∴点Bn的坐标为(2,0),

故答案为(2,0),(2,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.14、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.15、-1【解析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=±1,又反比例函数的图象在第二象限内,k<0,所以k=﹣1.故答案为﹣1.16、-1【分析】根据反比例函数图象上点的坐标特征解答.【详解】解:设反比例函数的图象为y=,把点(2,﹣2)代入得k=﹣1,则反比例函数的图象为y=﹣,把(m,1)代入得m=﹣1.故答案为﹣1.【点睛】本题考查反比例函数图象的性质,关键在于熟记性质.17、y=1(x﹣3)1﹣1.【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=1x1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新函数的图象,得新函数的表达式是y=1(x﹣3)1﹣1,故答案为y=1(x﹣3)1﹣1.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18、①③④【分析】由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;

①成立,那么②不成立;

最小值为AB与底面重合,故n=AB,故③成立;

由上可知,影子的长度先增大后减小,④成立.

故答案为:①③④.三、解答题(共78分)19、旗杆的高约是.【分析】过点B作于点,由题意知,,,,根据锐角三角函数即可分别求出AC和CD,从而求出结论.【详解】解:过点B作于点,由题意知,,,∵,∴m,∵,∴m,∴m,答:旗杆的高约是.【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.20、证明见解析.【分析】先根据已知条件判定四边形AEOD为矩形,再利用垂径定理证明邻边相等即可证明四边形AEOD为正方形.【详解】证明:∵OD⊥AB,∴AD=BD=AB.同理AE=CE=AC.∵AB=AC,∴AD=AE.∵OD⊥ABOE⊥ACAB⊥AC,∴∠OEA=∠A=∠ODA=90°,∴四边形ADOE为矩形.又∵AD=AE,∴矩形ADOE为正方形.【点睛】本题考查正方形的判定,解题的关键是先根据已知条件判定四边形AEOD为矩形.21、(1);(2);(3).【分析】(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线AC上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.【详解】解:将A,B坐标代入解析式得出b=-2,c=3,∴抛物线的解析式为:当x=0时,y=3,C的坐标为(0,3),根据A,C坐标可求出直线AC的解析式为y=x+3.直线,设直线的解析式为.直线与抛物线只有一个公共点,方程有两个相等的实数根,,解得.直线的解析式为..解析:如图所示,,抛物线的顶点坐标为.抛物线的顶点关于轴的对称点为.当时,,点在直线上.①当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.当时,.当直线与直线重合,即动点落在直线上时,点的坐标为.随着点沿抛物线对称轴向上运动,图形逐渐变小,直至直线与轴平行时,图形消失,此时点与抛物线的顶点重合,动点的坐标是,②当直线在直线下方时,直线不能与抛物线的任何部分形成封闭图形.综上,点的纵坐标的取值范围是.【点睛】本题是一道二次函数与一次函数相结合的综合性题目,根据点坐标求出抛物线与直线的解析式是解题的关键.考查了学生对数据的综合分析能力,数形结合的能力,是一道很好的题目.22、28.3海里【分析】过B作BD⊥AP于D,由已知条件求出AB=40,∠P=45°,在Rt△ABD中求出,在Rt△BDP中求出PB即可.【详解】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40海里,∠P=75°-30°=45°,在Rt△ABD中,∵AB=40,∠A=30°,∴海里,在Rt△BDP中,∵∠P=45°,∴(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【点睛】此题主要考查解直角三角形的应用-方向角问题,根据已知得出△PDB为等腰直角三角形是解题关键.23、旗杆AB的高度为【分析】首先根据三角形外角的性质结合等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BE•sin60,然后可得AB的长.【详解】∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20(m),在Rt△BEC中,BC=BE•sin60°,∴AB=BC﹣AC,答:旗杆AB的高度为.【点睛】此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.24、(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.【解析】(1)根据题意和函数图象中的数据可以求得相应的函数解析式;(2)根据题意可以得到利润与x之间的函数解析式,从而可以求得最大利润.【详解】(1)设y与x之间的函数关系式为y=kx+b,,解得:,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.【点睛】本题考查了一次函数的应用、二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.25、(1);(2)存在,或;;(3)当时,的最大值为:.【解析】(1)由二次函数交点式表达式,即可求解;(2)分三种情况,分别求解即可;(3)由即可求解.【详解】解:(1)由二次函数交点式表达式得:,即:,解得:,则抛物线的表达式为;(2)存在,理由:点的坐标分别为,则,将点的坐标代入一次函数表达式:并解得:…①,同理可得直线AC的表达式为:,设直线的中点为,过点与垂直直线的表达式中的值为,同理可得过点与直线垂直直线的表达式为:…②,①当时,如图1,则,设:,则,由勾股定理得:,解得:或4(舍去4),故点;②当时,如图1,,则,则,故点;③当时,联立①②并解得:(舍去);故点Q的坐标为:或;(3)设点,则点,∵,∴,,∵,∴有最大值,当时,的最大值为:.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.26、(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为1.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论