版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市南开中学2023-2024学年数学九年级第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.2.如果关于的方程是一元二次方程,那么的值为:()A. B. C. D.都不是3.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°4.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()A. B. C. D.5.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是()A.24 B.21 C.18 D.146.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是()A. B. C. D.7.下列事件是随机事件的是()A.三角形内角和为度 B.测量某天的最低气温,结果为C.买一张彩票,中奖 D.太阳从东方升起8.已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.9.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.10.设,下列变形正确的是()A. B. C. D.11.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是,;④当时,的取值范围是;⑤当时,随增大而增大其中结论正确的个数是A.1个 B.2个 C.3个 D.4个12.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或二、填空题(每题4分,共24分)13.正五边形的每个内角为______度.14.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.15.如图,个全等的等腰三角形的底边在同一条直线上,底角顶点依次重合.连接第一个三角形的底角顶点和第个三角形的顶角顶点交于点,则_________.16.一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.17.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.18.在中,,为的中点,则的长为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线过点A(—1,0),与⊙C相切于点D,求直线的解析式.20.(8分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.21.(8分)小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①若木杆的长为,则其影子的长为;②在同一时刻同一地点,将另一根木杆直立于地面,请画出表示此时木杆在地面上影子的线段;(2)如图2,夜晚在路灯下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①请在图中画出表示路灯灯泡位置的点;②若木杆的长为,经测量木杆距离地面,其影子的长为,则路灯距离地面的高度为.22.(10分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.23.(10分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.25.(12分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.26.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【点睛】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.2、C【分析】据一元二次方程的定义得到m-1≠0且m2-7=2,然后解不等式和方程即可得到满足条件的m的值.【详解】解:根据题意得m-1≠0且m2-7=2,
解得m=-1.
故选:C.【点睛】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3、C【解析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质4、B【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】设,则DE=(6-x)cm,由题意,得,解得.故选B.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5、B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,求出,然后代入数据进行计算即可得解.【详解】∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴,∴四边形EFGH的周长,
又∵AD=11,BC=10,
∴四边形EFGH的周长=11+10=1.
故选:B.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.6、B【分析】先根据圆锥侧面积公式:求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=,所以这个圆锥的全面积=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7、C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可.【详解】A.该事件不可能发生,是确定事件;B.该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【点睛】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.8、C【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..9、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
过C作CM⊥AB,交AB于点M,如图所示,
由垂径定理可得M为AE的中点,
∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、D【分析】根据比例的性质逐个判断即可.【详解】解:由得,2a=3b,A、∵,∴2b=3a,故本选项不符合题意;
B、∵,∴3a=2b,故本选项不符合题意;
C、,故本选项不符合题意;
D、,故本选项符合题意;
故选:D.【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果,那么ad=bc.11、C【分析】利用抛物线与轴的交点个数可对①进行判断;由对称轴方程得到,然后根据时函数值为0可得到,则可对②进行判断;利用抛物线的对称性得到抛物线与轴的一个交点坐标为,则可对③进行判断;根据抛物线在轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【详解】解:抛物线与轴有2个交点,,所以①正确;,即,而时,,即,,所以②错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,,所以③正确;根据对称性,由图象知,当时,,所以④错误;抛物线的对称轴为直线,当时,随增大而增大,所以⑤正确.故选:.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点位置:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.12、B【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.二、填空题(每题4分,共24分)13、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.14、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.15、n【分析】连接A1An,根据全等三角形的性质得到∠AB1B2=∠A2B2B3,根据平行线的判定得到A1B1∥A2B2,又根据A1B1=A2B2,得到四边形A1B1B2A2是平行四边形,从而得到A1A2∥B1B2,从而得出A1An∥B1B2,然后根据相似三角形的性质即可得到结论.【详解】解:连接A1An,根据全等三角形的性质得到∠AB1B2=∠A2B2B3,∴A1B1∥A2B2,又A1B1=A2B2,∴四边形A1B1B2A2是平行四边形.∴A1A2∥B1B2,A1A2=B1B2=A2A3,同理可得,A2A3=A3A4=A4A5=…=An-1An.根据全等易知A1,A2,A3,…,An共线,∴A1An∥B1B2,∴PnB1B2∽△PnAnA1,,又A1Pn+PnB2=A1B2,∴.故答案为:n.【点睛】本题考查了相似三角形的判定和性质,全等三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.16、或【分析】依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长【详解】分两种情况:①若,则,,连接,则,,,设,则,中,,解得,;②若,则,,四边形是正方形,,,,,设,则,,,,解得,,综上所述,的长为或,故答案为或.【点睛】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形17、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).
∴DC=-1-a,OC=1
又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.18、5【分析】先根据勾股定理的逆定理判定△ABC是直角三角形,再根据斜中定理计算即可得出答案.【详解】∵∴∴△ABC为直角三角形,AB为斜边又为的中点∴故答案为5.【点睛】本题考查的是勾股定理的逆定理以及直角三角形的斜中定理,解题关键是根据已知条件判断出三角形是直角三角形.三、解答题(共78分)19、或.【详解】解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD.∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1.又∵点A的坐标为(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,设直线l解析式为:y=kx+b(k≠0),则解得∴直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,抓住点D是直线与⊙C的切点,由C点坐标为(1,0)及圆的性质易求点B的坐标为(0,),由点A和点B的坐标易求直线的解析式20、①证明见解析;(2)S菱形CODP=24.【解析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;②利用S△COD=12S菱形CODP,先求出S△COD,即可得【详解】证明:①∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=12BD,OC=12∴OD=OC,∴四边形CODP是菱形.②∵AD=6,AC=10∴DC=AC2∵AO=CO,∴S△COD=12S△ADC=12×12∵四边形CODP是菱形,∴S△COD=12S菱形CODP=12∴S菱形CODP=24【点睛】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD.21、(1)①;②见解析;(2)①见解析;②【分析】(1)①根据题意证得四边形为平行四边形,从而求得结论;②根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)①分别过影子的端点及其线段的相应的端点作射线,两条射线的交点即为光源的位置;②根据∥,可证得,利用相似三角形对应高的比等于相似比即可求得结论.【详解】(1)①根据题意:∥,∥,∴四边形为平行四边形,∴;②如图所示,线段即为所求;(2)①如图所示,点即为所求;②过点作分别交、于点、∵∥∴,,解得:,路灯距离地面的高度为米.【点睛】本题考查平行投影问题以及相似三角形的判定和性质,平行光线得到的影子是平行光线经过物体的顶端得到的影子,利用相似三角形对应高的比等于相似比是解决本题的关键.22、(1),;(2)【分析】(1)
根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠
ADB,由等角对等边可得出;
(2)
过点B作BE∥
AD交AC于点E,同(1)
可得出AE,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1),.又,.,故答案为:;.(2)过点作交于点,如图所示.,.,在中,,即,解得:在中,.【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.23、1【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【详解】解:∵对角线相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.【点睛】本题考查了矩形对角线的性质,利用矩形对角线相等是解题关键.24、(1)y=x2﹣4x+1;(2);(1)见解析.【分析】(1)利用待定系数法进行求解即可;(2)设点M的坐标为(m,m2﹣4m+1),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+1),由抛物线的解析式求出对称轴,继而确定出1<m<1,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可;(1)分AB为边或为对角线进行讨论即可求得.【详解】(1)将点B(1,0)、C(0,1)代入抛物线y=x2+bx+c中,得:,解得:,故抛物线的解析式为y=x2﹣4x+1;(2)设点M的坐标为(m,m2﹣4m+1),设直线BC的解析式为y=kx+1,把点B(1,0)代入y=kx+1中,得:0=1k+1,解得:k=﹣1,∴直线BC的解析式为y=﹣x+1,∵MN∥y轴,∴点N的坐标为(m,﹣m+1),∵抛物线的解析式为y=x2﹣4x+1=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<1.∵线段MN=﹣m+1﹣(m2﹣4m+1)=﹣m2+1m=﹣(m﹣)2+,∴当m=时,线段MN取最大值,最大值为;(1)存在.点F的坐标为(2,﹣1)或(0,1)或(4,1).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+1,当x=0时,y=1;当x=4时,y=16﹣16+1=1,∴F点坐标为(0,1)或(4,1),综上所述,F点坐标为(2,﹣1)或(0,1)或(4,1).【点睛】本题考查了二次函数的综合题,涉及了待定系数法,二次函数的性质,平行四边形的性质,菱形的判定等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论是解题的关键.25、(1)1;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版建筑劳务分包协议标准文本精简版版B版
- 2024消防安全隐患排查与整改合作协议3篇
- 2024版公租房租赁合同标准样本
- 2024版全新包车客运合同范本下载
- 2024年电子产品一次性销售协议版B版
- 2024年货物运输中介服务合同范本版B版
- 2024年铝合金门窗安装质量保证合同3篇
- 2022中考化学一轮复习:走进化学世界 知识清单(人教版)
- 2024年砖块配送服务协议样本一
- 2024年青少年体育夏令营入营协议书及训练安排3篇
- 水利水电工程安全管理制度例文(三篇)
- 2025四川宜宾市南溪区属国企业招聘融资人员6人管理单位笔试遴选500模拟题附带答案详解
- DB45T 2048-2019 微型消防站建设管理规范
- 2025年超星尔雅学习通《劳动通论》章节测试题库及参考答案(培优)
- SCTP大云云计算PT2题库【深信服】认证考试题库及答案
- 外研版(2024新版)七年级上册英语期末质量监测试卷 3套(含答案)
- 《测土配方施肥》课件
- 新疆乌鲁木齐市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 职业健康检查管理制度
- 电梯维保管理体系手册
评论
0/150
提交评论