安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题含解析_第1页
安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题含解析_第2页
安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题含解析_第3页
安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题含解析_第4页
安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北市相山区淮北市第一中学2024届数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,862.三棱锥则二面角的大小为()A. B. C. D.3.已知向量,,若,共线,则实数()A. B. C. D.64.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac25.已知,则的值构成的集合为()A. B. C. D.6.已知,那么()A. B. C. D.7.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.208.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.9.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.1410.设的三个内角成等差数列,其外接圆半径为2,且有,则三角形的面积为()A. B. C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.12.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.13.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.14.若,则______,______.15.在行列式中,元素的代数余子式的值是________.16.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量,,其中.(1)若,求的值;(2)若,求的值.18.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.19.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.20.已知的三个内角的对边分别是,且.(1)求角的大小;(2)若的面积为,求的周长.21.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据茎叶图的数据,选择对应的众数和中位数即可.【题目详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【题目点拨】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.2、B【解题分析】

P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【题目详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【题目点拨】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.3、C【解题分析】

利用向量平行的性质直接求解.【题目详解】向量,,共线,,解得实数.故选:.【题目点拨】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.4、C【解题分析】

通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【题目详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【题目点拨】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.5、B【解题分析】

根据的奇偶分类讨论.【题目详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【题目点拨】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.6、A【解题分析】依题意有,故7、D【解题分析】

根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【题目详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【题目点拨】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.8、C【解题分析】

根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【题目详解】倾斜角为,斜率为,由点斜式得,即.故选C.【题目点拨】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.9、D【解题分析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【题目详解】依题意,解得,故.故选:D.【题目点拨】本小题主要考查等差数列通项的基本量计算,属于基础题.10、C【解题分析】

的三个内角成等差数列,可得角A、C的关系,将已知条件中角C消去,利用三角函数和差角公式展开即可求出角A的值,再由三角形面积公式即可求得三角形面积.【题目详解】的三个内角成等差数列,则,解得,所以,所以,整理得,则或,因为,解得或.①当时,;②当时,,故选C.【题目点拨】本题考查了三角形内角和定理、等差数列性质、三角函数和差角公式、三角函数辅助角公式,综合性较强,属于中档题;解题中主要是通过消元构造关于角A的三角方程,其中利用三角函数和差角公式和辅助角公式对式子进行化解是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。12、【解题分析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.13、6【解题分析】

利用分层抽样的定义求解.【题目详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【题目点拨】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.14、【解题分析】

对极限表达式进行整理,得到,由此作出判断,即可得出参数的值.【题目详解】因为所以,解得:.故答案为:;【题目点拨】本题主要考查由极限值求参数的问题,熟记极限运算法则即可,属于常考题型.15、【解题分析】

根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【题目详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【题目点拨】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.16、【解题分析】

利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【题目详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【题目点拨】本题考查斜二测画法的规则,考查基本识图、作图能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【题目详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【题目点拨】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.18、(1)1;(2)证明见解析,;(3)存在,.【解题分析】

(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【题目详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即

所以(3)因为对于任意的都有所以【题目点拨】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.19、(1);(2).【解题分析】

(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【题目详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【题目点拨】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.20、(1);(2)【解题分析】

(1)通过正弦定理得,进而求出,再根据,进而求得的大小;(2)由正弦定理中的三角形面积公式求出,再根据余弦定理,求得,进而求得的周长.【题目详解】(1)由题意知,由正弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论