




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省晋江市四校2024届数学高一下期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.2.关于x的不等式ax-b>0的解集是,则关于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)3.已知等差数列的前项和为,且,则满足的正整数的最大值为()A.16 B.17 C.18 D.194.,则的大小关系是()A.B.C.D.5.向量,,,满足条件.,则A. B. C. D.6.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.207.正项等比数列与等差数列满足,,,则的大小关系为()A. B. C. D.不确定8.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.9.已知直线是函数的一条对称轴,则的一个单调递减区间是()A. B. C. D.10.若满足条件的三角形ABC有两个,那么a的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)12.若,,,则M与N的大小关系为___________.13.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.14.已知数列的通项公式,则_______.15.记等差数列的前项和为,若,则________.16.方程在上的解集为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆.(1)过原点的直线被圆所截得的弦长为2,求直线的方程;(2)过外的一点向圆引切线,为切点,为坐标原点,若,求使最短时的点坐标.18.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?19.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.20.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.21.如图,已知函数,点分别是的图像与轴、轴的交点,分别是的图像上横坐标为的两点,轴,共线.(1)求的值;(2)若关于的方程在区间上恰有唯一实根,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【题目详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【题目点拨】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.2、A【解题分析】试题分析:因为关于x的不等式ax-b>0的解集是,所以,从而SKIPIF1<0≤0可化为SKIPIF1<0,解得,关于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),选A。考点:本题主要考查一元一次不等式、一元二次不等式的解法。点评:简单题,从已知出发,首先确定a,b的关系,并进一步确定一元二次不等式的解集。3、C【解题分析】
先由,得到,,,公差大于零,再由数列的求和公式,即可得出结果.【题目详解】由得,,,,所以公差大于零.又,,,故选C.【题目点拨】本题主要考查等差数列的应用,熟记等差数列的性质与求和公式即可,属于常考题型.4、D【解题分析】由题意得,,故选D.【题目点拨】本题考查函数的三角恒等变换和三角函数的图像与性质,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,具有一定的综合性,属于中档题型.首先利用诱导公式和两角和差公式将化简,再利用正弦的函数图像可得正解.5、C【解题分析】向量,则,故解得.故答案为:C。6、D【解题分析】
根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【题目详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【题目点拨】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.7、B【解题分析】
利用分析的关系即可.【题目详解】因为正项等比数列与等差数列,故又,当且仅当时“=”成立,又即,故,故选:B【题目点拨】本题主要考查等差等比数列的性质与基本不等式的“一正二定三相等”.若是等比数列,且,则若是等差数列,且,则8、B【解题分析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【题目详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【题目点拨】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.9、B【解题分析】
利用周期公式计算出周期,根据对称轴对应的是最值,然后分析单调减区间.【题目详解】因为,若取到最大值,则,即,此时处最接近的单调减区间是:即,故B符合;若取到最小值,则,即,此时处最接近的单调减区间是:即,此时无符合答案;故选:B.【题目点拨】对于正弦型函数,对称轴对应的是函数的最值,这一点值得注意.10、C【解题分析】
利用正弦定理,用a表示出sinA,结合C的取值范围,可知;根据存在两个三角形的条件,即可求得a的取值范围。【题目详解】根据正弦定理可知,代入可求得因为,所以若满足有两个三角形ABC则所以所以选C【题目点拨】本题考查了正弦定理在解三角形中的简单应用,判断三角形的个数情况,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【题目详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.12、【解题分析】
根据自变量的取值范围,利用作差法即可比较大小.【题目详解】,,,所以当时,所以,即,故答案为:.【题目点拨】本题考查了作差法比较整式的大小,属于基础题.13、【解题分析】
设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【题目详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【题目点拨】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.14、【解题分析】
本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【题目详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【题目点拨】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.15、10【解题分析】
由等差数列求和的性质可得,求得,再利用性质可得结果.【题目详解】因为,所以,所以,故故答案为10【题目点拨】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.16、【解题分析】
由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【题目详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【题目点拨】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解题分析】
(1)利用垂径定理求出圆心到直线的距离,再分过原点的直线的斜率不存在与存在两种情况,分别根据点到线的距离公式求解即可.(2)设,再根据圆的切线长公式以及求出关于关于的关系,再代入的表达式求取得最小值时的即可.【题目详解】(1)圆圆心为,半径为.当直线的斜率不存在时,圆心到直线的距离,故不存在.当直线的斜率存在时,设的方程:,即.则圆心到的距离,由垂径定理得,即,即,解得.故的方程为或(2)如图,设,因为,故,则,即,化简得,即.此时,故当,即时最短.此时【题目点拨】本题主要考查了直线与圆的位置关系,包括垂径定理以及设点根据距离公式求距离最值的问题.需要根据题意列出关系式化简,并用二次函数在对称轴处取最值的方法.属于中档题.18、(1)见解析;(2)见解析【解题分析】
1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【题目详解】(1)连结BD交AC于O,连结EO,因为O,E分别为BD.PD的中点,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E为PD的中点,所以,,又,所以,AE⊥平面PCD.(3)设N为AD中点,连接PN,则.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB为PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,设AD=1,AB=x,由,得∽,解之得:,所以,当时,PB⊥AC.【题目点拨】本题综合考查线面平行的判定,线面垂直的判定,及探索性问题找异面直线垂直,第三问难度较大,需要把异面直线垂直转化为射影垂直,即共面垂直问题.19、(1)(2)(3)【解题分析】
(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在的概率,即可求得答案.【题目详解】(1)由直方图可得:(2)根据中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标.直方图可得:可得:辆纯电动汽车续驶里程的中位数.(3)续驶里程在的车辆数为:续驶里程在第五组的车辆数为.从辆车中随机抽取辆车,共有中抽法,其中恰有一辆车的续驶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度行政合同在公共安全事件应对中的实施与特点
- 2025版知识产权许可合同模板范本
- 2025年度生态环保型建筑装修工程合同样本
- 2025版防火卷帘门供货与智能监控系统集成合同
- 2025年度高新技术产业项目股权质押借款合同
- 2025年高端婚车租赁带司机服务合同
- 二零二五年度循环经济贷款连带责任保证担保合同样本
- 二零二五年度地铁隧道施工合同
- 二零二五年度水库土地租赁与农业发展合同
- 二零二五年度电动汽车充电网络供电协议合同范本
- 工卡管理程序
- 2025销售人员薪资合同
- 银行贷款电子合同电子版(2025年版)
- 从哪吒2的票房成功看大国工匠精神专题团课
- 2025年医疗救护员、护理员职业技能鉴定理论考试指导题库-下(填空、简答题)
- 2025年辽宁省安全员C证考试(专职安全员)题库及答案
- 幼儿园疫情防控演练流程
- 《电子系统综合设计》课程教学大纲
- 语言与健康研究近二十年概观及国际前沿动向
- 《交通事故车辆及财物损失价格鉴证评估技术规范》
- DB45T 2144-2020 工业企业重金属污染地块修复技术规范
评论
0/150
提交评论