工程光学课程设计报告及工程光学照相物镜镜头设计与像差分析_第1页
工程光学课程设计报告及工程光学照相物镜镜头设计与像差分析_第2页
工程光学课程设计报告及工程光学照相物镜镜头设计与像差分析_第3页
工程光学课程设计报告及工程光学照相物镜镜头设计与像差分析_第4页
工程光学课程设计报告及工程光学照相物镜镜头设计与像差分析_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

工程光学课程设计设计名称:工程光学课程设计院系名称:电气与信息工程学院专业班级:学生姓名:学号:指导教师:黑龙江工程学院教务处制年12月

工程光学课程设计评分表题目名称25×显微物镜实习时间2013年12月23日至2013年12实习地点实验楼513设计报告得分序号评价项目满分得分1应用文献资料能力及综合运用知识能力2设计说明书撰写水平;插图质量3设计(实验)能力及创新性设计报告得分总计实物制作效果评语:指导教师签字:年月日学生姓名班级学号平时表现(20分)答辩(20分)综合评定得分实习成绩注:最后成绩的评定以优()、良()、中()、及格()和不及格(少于60分)五级给出。一、ZEMAX软件介绍美国ZEMAXDevelopmentCorporation研发ZEMAX是一套综合性的光学设计软件,集成了光学系统所有的概念、设计、优化、分析、公差分析和文件管理功能。ZEMAX所有的这些功能都有一个直观的接口,它们具有功能强大、灵活、快速、容易使用等优点。ZEMAX有两种不同的版本:ZEMAX-SE和ZEMAX-EE,有些功能只在EE版本中才具有。ZEMAX可以模拟序列性(Sequential)和非序列性(non-sequential)系统,分别针对成像系统和非成像系统。ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。在一些较为复杂的光学系统中,可以同时使用序列和非序列光线追迹。根据需要,可以采用序列光学表面与任意形状、方向或位置的非序列组件进行结合,共同形成一个系统结构。二、显微物镜设计方案25×显微镜物镜属于中倍显微物镜,通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×之间,数值孔径NA为0.2至0.6之间。由于显微物镜倍率较高,像距远大于物距,显微物镜的设计通常采用逆光路方式,即把像方的量当做物方的量来处理。里斯特物镜两个双胶合透镜光焦度分配的原则通常是使每个双胶合透镜产生的偏角相等或者是后组的偏角略大于前组。里斯特物镜的光阑通常放在第一个双胶合透镜上。当两个双胶合透镜相互补消球差和慧差时,两个双胶合透镜的间隔大致和物镜的总焦距相等。第一个双胶合的焦距约为物镜焦距的二倍。第二个双胶合的焦距大致和物镜的总焦距相等。物镜的像差校正方式采取两个双胶合透镜各自单独校正球差、慧差和色差,这种方案的有点是:二个双胶合透镜组合在一起则为一个中倍物镜,移去一个双胶合透镜后可用作低倍显微物镜使用。其总设计图如图1所示。图125×显微镜物镜设计方案图三、显微镜物镜及参数1、物镜的数值孔径物镜的数值孔径表征物镜的聚光能力,是物镜的重要性质之一,增强物镜的聚光能力可提高物镜的鉴别率。数值孔径通常以符号“NA”表示(即NumericalAperture)。根据理论的推导得出:式中

n──物镜与观察之间介质的折射率;

u──物镜的孔径半角。因此,有两个提高数字孔径的途径:(a)增大透镜的直径或减少物镜的焦距,以增大孔径半角u。此法因导致象差增大及制造困难,实际上sinu的最大值只能达到0.95。(b)增加物镜与观察之间的折射率n。2、物镜的分辨率物镜的分辨率是指物镜具有将两个物点清晰分辨的最大能力。要明白分辨率可以有一定的限度,这就要用光通过透镜后产生衍射现象来解释。物体通过光学仪器成像时,由于光的衍射,物点的象不再是一个几何点,而是有一定大小的衍射斑。衍射斑中心亮斑集中了全部能量的83.78%,叫作艾里斑。艾里斑的中心代表像点的位置。根据瑞利(Rayleigh)判断,两个相邻像点之间的间隔等于艾里斑半径时则能被光学系统分辨。其分辨率为根据道威(Doves)判断,两个相邻像点之间的两衍射斑中心距为0.85a时,则能被光学系统分辨。其分辨率为由以上公式可知,显微镜的分辨率主要取决于显微物镜的数值孔径。3、物镜的有效放大率在保证物镜的分辨率充分利用时所对应的物镜的放大率,称为物镜的有效放大率。有效放大率可由以下关系推出:设眼睛容易分辨的角距离为,则在明视距离上对应的线距离为把换算到显微镜的物空间,按道威判断取值,则设照明光的平均波长为0.000555mm,得近似写作由此可知:物镜的有效放大率由物镜的数值孔径及入射光波长决定。4、实际参数确定按照设计要求:物镜放大倍数为25,数值孔径NA=0.4,通过以上几个参数的计算,计算出理论上的数值并确定符合数值要求的镜片。初步确定第一个双胶合透镜的初始结构由ZF3与K9组合,第二个双胶合透镜的初始结构由ZF3与ZK9组合。求出双胶合透镜的初始结构之后,就可以进行光线追迹、相差计算和平衡了,如果的得到不满意的结果,可重新选择玻璃对,再重复上面的计算,达到设计要求,也可以采用自动设计程序作进一步校正,其结果可能会更好。四、25×显微镜物镜光学系统仿真过程1、选择初始结构并设置参数显微镜物镜的初始结构选择如图2图2显微镜物镜初始结构图在用ZEMAX软件进行设计时,将显微镜倒置设计。设置参数如下:物方数值孔径为0.016,物高为25mm,物方半视场高度为12.5mm。此时该系统的结构、传函以及像差如图3所示。从MTF图和像差图可以看出该显微物镜的成像质量还不是很好,需要对其进行自动优化校正。图3初始结构各参数仿真图2、自动优化首先,建立自动优化函数。具体过程如下:选择Editors>>MeritFunction,弹出MeritFunctionEditor对话框,在Type栏中输入EFFL,并将Target定为6.930840,Weight值取1.0;其次,选择Editor对话框工具栏中的Tools>>DefaultMeritFunction,设置OptimizationandReference为RMS~Wavefront~Centroid;最后,选择确定按钮进行自动优化。自动优化后,显微镜物镜结构的数据如下:图4显微镜物镜优化结构图图5自动优化后各参数仿真图3、最终仿真参数分析由图可看出:(1)物方数值孔径NA=0.3721605,与要求的0.4很接近;(2)初始设定的物高为12.5,仿真得像高为0.498,则放大倍数m=25.1,与要求的放大倍数25倍十分接近。最终的仿真参数基本符合设计的要求。课程设计说明书照相物镜发展历程物镜的发展经历了许多年,经过不断地更新与发展,实际用途越来越广,质量越累越好,物镜经历了以下发展:1.1风情摄影物镜最早出现的照相物镜在1812年是单片的正月牙透镜,相对孔径小于1:14,视场50度以内,可用于室外照明良好的条件下拍照。1821年出现了胶合的透镜,代替了弯月牙型的单透镜,双胶合透镜因色差得到校正成像质量有所提高,但制作成本比较高,正、负透镜分离的形式可以得到更好的成像质量,因为双分离情形下可以更好地校正色散。1.2匹兹堡人物物镜1840年匹兹堡设计出了一个相对孔径为1:3.4,视场为25度左右的物镜,即匹兹堡人像物镜,该物镜可用于室内摄影,是第一个依靠设计而制造出来的照相物镜。匹兹堡物镜是1910年以前的所有物镜中相对孔径最大的,它在近轴部分的成像优良,至今仍在用作电影放映物镜等须要大孔径小视场的场合,匹兹堡物镜的改进形式很多,是现在五大类物镜中的一类。1.3对称型物镜最早出现的对称型物镜,相对孔径很小,如斯坦赫尔的潜望镜头,相对孔径为1:30,视场为70度,只能用做风景摄影。海普岗是这种类型的极限结构,是冯虚格在1900年设计出的,两个透镜的外表几乎是半球面,具有140度左右的视场,相对孔径很小1:30,但它具有大的无畸变视场,至今仍用在航测仪器中。数器、输入/输出接口和其他多种功能期间集成在一块芯片上的微型计算机。1.4三片式物镜1893年,塔克洛尔用分离薄透镜作为对称型的一半,设计出了柯克三片式物镜,这是能校正所有像差的一种最简单的结构,在非对称情况下,其独立变数恰能校正七种像差。这种类型现在已具有相对孔径1:4,视场50度的光学性能。如果视场减小时,相对孔径可达1:2.8,现在它依旧是一种比较流行的物镜。1902年出现的天塞物镜可看做三式的后面一块正透镜改为二块玻璃胶合的结果,它在高级像差方面要比三片式要好。1.5双高斯物镜双高斯与达岗等对称物镜不同,它是用薄透镜加厚透镜的结构。由于具有小半径的厚透镜处在薄透镜后的会聚光中,近于不晕位置,因此它的像差和带像差都有所缩小,相对孔径比较大,它是现在1:2物镜的主要结构。1.6摄远物镜用正负二透镜组所构成能使摄影物长度减短的都称为摄远物镜。1.7反摄远物镜由正负透镜组分离组成,负透镜位于正透镜之前,从而使主平面后移至物镜后方,达到像方顶焦距大于焦距的目的。1.8广角物镜广角物镜是以海里的全天照相物镜出发的,其视场很大。1.9变焦距物镜物镜能在一定范围内迅速的改变焦距,从而在投影仪固定不动的情况下获得不同比例的影像,可以代替多个定焦距摄影物镜使用。(本次涉及所使用的三片物镜是具有中等光学特性的照相物镜中结构最单,像片质量最好的一种,被广泛使用在比较廉价的135#和120#相机中,例如国产的海鸥—4、海鸥—9、天鹅相机等。这种照相物镜进一步复杂化的目的,大多是为了增大相对孔径,或提高视场边缘成像质量)2照相物镜光学性能照相物镜的基本光学性能主要由三个参数表征,即相对孔径D/f’,视场角2w,焦距f’。2.1相对孔径相对孔径是个比值,镜头的有效的孔径与焦距比值,表示镜头的纳光束多少。照相物镜中只有很少几种如微缩物镜和制版物镜追求高分辨率,多数照相物镜因其本身的分辨率不高,相对孔径的作用是为了提高像面光照度E’=1/4πLτ(D/f’)2照相物镜按其相对孔径的大小,大致可分为如下表1所示:表1照相物镜的相对孔径弱光物镜相对孔径小于1:9;普通物镜相对孔径为1:9~1:3.5强光物镜相对孔径为1:3.5~1:1.4超强光物镜相对孔径大于1:1.42.2视场角2w在光学仪器中,以光学镜头为顶点,以被测目标的物像,可通过镜头的最大范围的两条边缘构成的夹角叫做视场角。照相物镜的视场角决定其在接受器上成清晰像的空间范围。视场角越大,视野就越大,光学倍率就越小。照相物镜没有专门的视场光阑,视场大小被接受器本身的有效接受面积所限制,即以接收器本身的边框作为视场光阑。按视场角的大小,照相物镜又可分为如下表2所示:表2照相物镜视场角小视场物镜视场角在30°以下中视场物镜视场角在30°~60°之间广角物镜视场角在60°~90°之间超广角物镜视场角在90°以上2.3焦距f’焦距是光学系统中衡量光的聚集或发散的度量方式,指平行光入射时从透镜光心到光聚集之焦点的距离。照相物镜的焦距决定所成像的大小当物体处于有限远时,像高为y’=(1-:垂轴放大率,。对一般的照相机来说,物距l都比较大,一般>1米,f’为几十毫米,因此像平面靠近焦面,,所以当物体处于无限远时,→∞像高为y’=照相物镜的焦距标准如下表3所示:表3照相物镜焦距标准物镜类型物镜焦距f’/mm鱼眼超广角广角7.5~1517~2024~28~25标准段望远望远超望远5085~100135~200~300400~500~600~800照相物镜上述三个光学性能参数是相互关联,相互制约的。这三个参数决定了物镜的光学性能。企图同时提高这三个参数的指标则是困难的,甚至是不可能的。只能根据不同的使用要求,在侧重提高一个参数的同时,相应地降低其余两个参数的指标。3设计过程3.1初始结构的选择照相物镜属于大视场大孔径系统,因此需要校正的像差也大大增加,结构也比较复杂,所以照相物镜设计的初始结构一般都不采用初级像差求解的方法来确定,而是根据要求从手册、资料或专利文献中找出一个和设计要求比较接近的系统作为原始系统。在选择初始结构时,不必一定找到和要求相近的焦距,一般在相对孔径和视场角达到要求时,我们就可以将此初始结构进行整体缩放得到要求的焦距值。设计要求:1、焦距:f’=12mm;2、相对孔径D/f’不小于1/2.8;3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm;4、后工作距>6mm;5、在可见光波段设计(取d、F、C三种色光,d为主波长);6、成像质量,MTF轴上>40%@100lp/mm,轴外0.707>35%@100lp/mm;7、最大畸变<1%。照相物镜的视场角和有效焦距决定了摄入底片或图像传感器的空间范围,镜头所成的半像高y可用公式y=-f*tanw计算。f为有效焦距,2w为视场角。半像高y应稍大于图像传感器CCD或CMOS的有效成像面对角线半径,防止CMOS装调偏离光轴而形成暗角。经过简单计算:y’=sqrt(4.29^2+5.76^2)/2≈3.6mm,w=atan(y’/f)≈16.66°,视场角2w=33.32°。在光学技术手册查询后选定初始结构为后置光阑的三片物镜(如图1所示),后置光阑三片物镜原始结构图1初始参数为:焦距分f’=42.12mm;相对孔径2.8;视场角2w=54°。其余参数如下表4所示:表4其余参数r1=13.44d1=4.41n=1.67779v=55.2r2=30.996d2=4.41r3=-40.614d3=1.01n=1.59341v=35.5r4=13.44d4=2.39r5=32.508d5=3.36n=1.69669v=55.4r6=-27.0063.2输入参数和缩放将参数输入ZEMAX中:其中第六面设为光阑面,厚度设为marginalrayheight,移动光标到STO光阑面(中间一个面)的“无穷(Infinity)之上”;按INSERT键,这将会在那一行插入一个新的面,并将STO光阑面往下移。新的面被标为第2面。再按按INSERT键两次,移动光标到IMA像平面,按INSERT键两次。在LDE曲率半径(Radius)列,顺序输入表4中的镜片焦距(注意OBJ面不做任何操作);在镜片厚度(Thickness)列顺序输入表4中的镜片厚度;在第七个面厚度处单击右键,选择面型为MarginalRayHeight。在镜片类型(Class)列输入镜片参数,方法是:在表中点右键对话框SolveType选中Model,Indexnd中输入n值AbbeVd中输入v值,如下图2所示。在system-general-aperture中输入相对孔径值2.8如下图3所示,在tools-makefocus中该改焦距为12mm进行缩放如下图4所示。在system-wavelength中输入所选波段,选d光为主波长如下图5所示。输入初始参数如下图2所示:图2输入相对孔径值设置相对孔径值和波段如下图3所示:图3:输入相对孔径值改焦距为12mm进行缩放如下图4所示:图4:缩放后图输入所选波段如下图5所示:图5输入所选波长缩放后得到我们所设计的焦距f’=12mm的初始参数(如下图6所示)。图6:初始参数现在开始定义视场,我们根据之前所得像高y’=3.6mm,依次乘以0,0.3,0.5,0.7071得到所选孔径光束的Y-field,即0,1.08,1.8,2.5452输入到system-field中,类型选择真值高度。到这里,初始结构及其参数已经完成。3.3在ZEMAX中进行优化利用ZEMAX得到初始结构的MTF曲线(如下图7所示)可看出成像质量很差,因此需要校正像差。MTF曲线图如下图7所示:图7:MTF曲线图该结构可以用作优化变量的的数据有:6个曲率半径,2个空气间隔,3个玻璃厚度。首先使用DefaultMeritFunction建立缺省评价函数进行优化,选择Editors-MeritFunction,在第一行中先输入EFFL,目标值设为12,权重设为1。在输入SPHA,在Target中输入0.4,在Weight中输入1。第二个BLNK改为MTFT并Enter,在Freq中输入100,在Target中输入0.04,在Weight中输入1。同理输入MTFA和MTFS(如下图8所示)。再选择Tools-DefaultMeritFunction,设置玻璃厚度以及空气间隔、start设为2(如下图9所示),再选择OK,建立缺省评价函数。(EFFL:Effectivefocallength的缩写,指定波长号的有效焦距。SPHA:指球差,如果Surf=0,则指整个系统的球差总和。MTF:指子午调制传递函数。)缺省评价函数如下图8所示:图8:缺省评价函数设置玻璃厚度以及空气间隔如下图9所示:图9:玻璃及空气厚度然后在Analysis-AberrationCoefficients-SeidelCoefficients中查看,找出对赛得和数影响大的面,将这些面的曲率半径设为变量优先优化如图10所示。图10发现第一面和光阑面影响较大,优先优化。先将STO面的类型改为EvenAsphere,并将此行的4thterm、6thterm、8thterm设为变量。将1、6面曲率半径设为变量,选择快捷选项Opt,然后进行优化,优化后取消变量,将剩余面的曲率半径设为变量,再次优化,完毕后取消变量。再将透镜间隔和玻璃厚度先后进行优化。如下图11所示。优化后图图11到这一步后发现已经基本符合设计要求,再根据2D图适当调整曲率半径和厚度,每次调整后再次优化实时关注MTF图的曲线变化,最后使各个参数都在可接受范围之内。赛德尔系数如下图14所示:图143D草图显示如下图15所示:图15:3D草图在分析(Analysis)的杂项中得出视场场区图,然后再在分析中找到点列图得到如下图所示的点列图如下图16所示:图16:点列图优化后视场、场曲失真图如下图17所示图17:视场、场曲失真图总结在这次工程光学课程设计中,我选择的题目是照相物镜镜头设计与像差分析,刚看到这个题目时我以为很简单,感觉有些熟悉,但是等到做的时候才发现并不是这么回事的,真的到自己做的时候才发现还是很有难度的。在这次课程设计中,之所以能够从当初的茫然无措中走出来最重要的就是平时的光学知识的学习和积累,。在接到这个题目之后,我查阅了很多关于照相物镜的资料,去了图书馆,又在网上搜到很多的相关资料,通过对这些资料的研究和分析。不但对我的课程设计有很大的帮住,而且对自己的照相物镜的学习也提高了不少,学到了许多平时课本上比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论