大数据平台工作原理_第1页
大数据平台工作原理_第2页
大数据平台工作原理_第3页
大数据平台工作原理_第4页
大数据平台工作原理_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大数据平台hadoop工作原理hadoop工作原理Hadoop无非就是:HDFS(文件系统),yarn(资源管理,任务调配),mapReduce(编程模型,大数据并行运算),我们安装完hadoop就已经包括了以上;Hadoop集群其实就是HDFS集群,说到HDFS,下面来谈谈什么是HDFS。HDFS:其实就是个文件系统,和fastDFS类似,像百度云,阿里云等就是个文件存储系统,当然一般如果仅仅是为了用来存储文件的话直接fastDFS这个就已经够了,HDFS目的不单单是用来存储文件这么简单,它还涉及分布式计算等。HDFS工作原理,用文字有点难以表达,那么我就直接画个图吧:hdfs工作原理hadoop工作原理HDFS分有NameNode和DataNode,NameNode是整个文件系统目录,基于内存存储,存储的是一些文件的详细信息,比如文件名、文件大小、创建时间、文件位置等。Datanode是文件的数据信息,也就是文件本身,不过是分割后的小文件。上面图已经有做了介绍了,这里就不再赘述了。Yarn:是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。MapReduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。hadoop工作原理hadoop工作原理MapReduce所编写好的程序将跑在各个DataNode上,这里有个概念就是计算向数据移动,也就是DataNode的数据文件存储在这里,我的程序发送到DataNode节点上去读取数据和分析数据就好了。期间会有出现各个DataNode之间进行数据发送,比如说节点DataNode1进行这台机读取数据时进行shuffle时需要把相同的key作为一组调用一次reduce,那么如果这时当然会有一些同key的在其他节点DataNode上的,所以就需要进行数据传送。Input这里的wordcount.txt就是DataNode上的文件数据。Split阶段是MapReduce一定会执行的,这是它的规则,而map阶段就是我们必须进行手动干预的,也就是编码对数据进行分析,分析成map文件,然后再shuffle阶段中自发进行数据派送,规则是以同样的key为一组调用reduce阶段进行数据压缩,reduce也是进行手动干预的,我们编码进行数据计算,计算同key的个数,统计完后就可以输出一个文件出来了,这整个过程数据的传输都是放在co

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论