版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市福田区耀华实验学校华文部高一数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心2.在中,且,则等于()A. B. C. D.3.如图是一个正方体的平面展开图,在这个正方体中①②③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④4.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=5.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.86.将函数的图象向左平移个长度单位后,所得到的图象关于()对称.A.轴 B.原点 C.直线 D.点7.已知点P为圆上一个动点,O为坐标原点,过P点作圆O的切线与圆相交于两点A,B,则的最大值为()A. B.5 C. D.8.设等比数列的前项和为,若,,则()A.63 B.62 C.61 D.609.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π10.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)12.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.13.若数列的前项和为,则该数列的通项公式为______.14.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.15.一水平位置的平面图形的斜二测直观图是一个底平行于轴,底角为,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.16.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.2456825355575三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,侧面与侧面均为边长为2的等边三角形,,为中点.(1)证明:;(2)求点到平面的距离.18.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?19.已知数列的各项排成如图所示的三角形数阵,数阵中,每一行的第一个数,,,,…构成等差数列,是的前n项和,且,(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求的值;(2)设,对任意,求及的最大值.20.已知圆C过点,圆心在直线上.(1)求圆C的方程;(2)过圆O1:上任一点P作圆C的两条切线,切点分别为Q,T,求四边形PQCT面积的取值范围.21.在如图所示的直角梯形中,,求该梯形绕上底边所在直线旋转一周所形成几何体的表面积和体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【题目详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【题目点拨】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.2、A【解题分析】
在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【题目详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【题目点拨】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.3、D【解题分析】
作出直观图,根据正方体的结构特征进行判断.【题目详解】作出正方体得到直观图如图所示:由直观图可知,与为互相垂直的异面直线,故①不正确;,故②正确;与为异面直线,故③正确;由正方体性质可知平面,故,故④正确.故选:D【题目点拨】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.4、B【解题分析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.5、A【解题分析】
根据平均数相同求出x的值,再根据方差的定义计算即可.【题目详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【题目点拨】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.6、A【解题分析】
先利用辅助角公式将未变换后的函数解析式化简,再根据图象变换规律得出变换后的函数的解析式为,结合余弦函数的对称性来进行判断。【题目详解】,函数的图象向左平移个长度单位后得到,函数的图象关于轴对称,故选:A.【题目点拨】本题考查三角函数的图象变换,以及三角函数的对称性,在考查三角函数的基本性质问题时,应该将三角函数的解析式化为一般形式,并借助三角函数的图象来理解。7、A【解题分析】
作交于,连接设,得,,进而,换元,得,通过求得的范围即可求解【题目详解】作交于,连接设,则,∴取,∴.显然易知令,,当且仅当等号成立;此时∴故选A【题目点拨】本题考查圆的几何性质,切线的应用,弦长公式,考查函数最值得求解,考查换元思想,是难题8、A【解题分析】
由等比数列的性质可得S2,S4-S2,S6-S4成等比数列,代入数据计算可得.【题目详解】因为,,成等比数列,即3,12,成等比数列,所以,解得.【题目点拨】本题考查等比数列的性质与前项和的计算,考查运算求解能力.9、B【解题分析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【题目详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10、B【解题分析】
由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【题目详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【题目点拨】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④.【解题分析】
①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【题目详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【题目点拨】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.12、【解题分析】
先结合求出,再由求解即可【题目详解】由,则故答案为:【题目点拨】本题考查扇形的弧长和面积公式的使用,属于基础题13、【解题分析】
由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【题目详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【题目点拨】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.14、﹣2.【解题分析】
由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【题目详解】由,,知,则,.故答案为:,.【题目点拨】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.15、【解题分析】如图过点作,,则四边形是一个内角为45°的平行四边形且,中,,则对应可得四边形是矩形且,是直角三角形,.所以16、60【解题分析】
由样本中心过线性回归方程,求得,,代入即可求得【题目详解】由题知:,,将代入得故答案为:60【题目点拨】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】
(1)由题设AB=AC=SB=SC=SA,连结OA,推导出SO⊥BC,SO⊥AO,由此能证明SO⊥平面ABC;(2)设点B到平面SAC的距离为h,由VS﹣BAC=VB﹣SAC,能求出点B到平面SAC的距离.【题目详解】(1)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面,故AC⊥SO.(2)设B到平面SAC的距离为,则由(Ⅰ)知:三棱锥即∵为等腰直角三角形,且腰长为2.∴∴∴△SAC的面积为=△ABC面积为,∴,∴B到平面SAC的距离为【题目点拨】本题考查线面垂直的证明,考查点到平面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.18、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解题分析】
(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题意可以求出该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)利用基本不等式可以求出年平均利润最大值.【题目详解】解:(1)由题意知,年总收入为万元年维护总费用为万元.∴总利润,即,(2)年平均利润为∵,∴当且仅当,即时取“”∴答:这套设备使用6年,可使年平均利润最大,最大利润为35万元.【题目点拨】本题考查了应用数学知识解决生活实际问题的能力,考查了基本不等式的应用,考查了数学建模能力,考查了数学运算能力.19、(1)(2),.【解题分析】
(1)先求出的通项公式,再计算等比数列的公比,最后得到.(2)先计算,再利用裂项求和计算得到,设函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漏肩风教学课件
- 健康促进社区实施课件
- 小毛驴知识讲义
- 《沟通与口才》特训
- 2024届江苏省徐州市撷秀初级中学高三四月调研测试数学试题试卷
- 2024年税务师《税法1》考前必刷必练题库500题(含真题、必会题)
- 自律精神与自我管理能力培养主题班会
- 2024-2025学年冀教版小学五年级上学期期中英语试题及答案指导
- 《电子商务概论全部》课件
- 双十一保险盛宴
- 教师培训讲座(32张)课件
- 约翰·费斯克及理解大众文化
- 湘教版初中数学知识点总复习
- 手机电子围栏侦码系统解决方案产品介绍汇编
- 沥青MSDS安全技术说明书(共6页)
- 中药、天然药物综述资料撰写的格式和内容的技术指导原则——临床
- 201809早教商业模式与竞争力专题光明地平线bfam剖析中国2b业务实践思考
- 水驱气藏开发特点与开发技术
- 桥架支架计算表格-精准版
- 常远鄂博小品视频-常远鄂博小品《玲儿想丁当》台词剧本
- 9_公司中层干部能力素质360度评估表
评论
0/150
提交评论