2024届广东省深圳红岭中学高一数学第二学期期末联考试题含解析_第1页
2024届广东省深圳红岭中学高一数学第二学期期末联考试题含解析_第2页
2024届广东省深圳红岭中学高一数学第二学期期末联考试题含解析_第3页
2024届广东省深圳红岭中学高一数学第二学期期末联考试题含解析_第4页
2024届广东省深圳红岭中学高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳红岭中学高一数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,,数列是等差数列,且,则()A.3 B.6 C.7 D.82.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.3.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②4.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形5.如图,正四面体,是棱上的动点,设(),分别记与,所成角为,,则()A. B. C.当时, D.当时,6.将函数y=2sinx+π3sinA.π6 B.π12 C.π7.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形8.已知在中,,那么的值为()A. B. C. D.9.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.10.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解为______.12.数列满足,设为数列的前项和,则__________.13.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.14.点到直线的距离为________.15.直线在轴上的截距是__________.16.在上,满足的的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.18.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2(Ⅰ)求A的大小;(Ⅱ)如果cosB=6319.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.20.已知函数.(I)求的最小正周期;(II)求在上的最大值与最小值.21.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由等比数列的性质求得,再由等差数列的性质可得结果.【题目详解】因为等比数列,且,解得,数列是等差数列,则,故选:D.【题目点拨】本题主要考查等比数列与等差数列的下标性质,属于基础题.解等差数列问题要注意应用等差数列的性质().2、C【解题分析】

由复合函数单调性及函数的定义域得不等关系.【题目详解】由题意,解得.故选:C.【题目点拨】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.3、D【解题分析】

设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【题目详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【题目点拨】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.4、D【解题分析】

根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【题目详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【题目点拨】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.5、D【解题分析】作交于时,为正三角形,,是与成的角,根据等腰三角形的性质,作交于,同理可得,当时,,故选D.6、B【解题分析】

由诱导公式将函数化简成y=sin(2x+2π3)【题目详解】∵(x+π∴sin∴y=2sinx+πy=sin∵平移后的函数恰为偶函数,∴x=0为其对称轴,∴x=0时,y=±1,∴-2φ+2π3=kπ+∵φ>0,∴k=0时,φmin【题目点拨】通过恒等变换把函数变成y=Asin(ωx+φ)(ω>0)的形式,再研究三角函数的性质是三角函数题常见解题思路;三角函数若为偶函数,则该条件可转化为直线x=0为其中一条对称轴,从而在7、B【解题分析】

利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【题目详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【题目点拨】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.8、A【解题分析】

,不妨设,,则,选A.9、C【解题分析】

由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【题目详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【题目点拨】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.10、C【解题分析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【题目详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【题目点拨】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

由指数函数的性质得,由此能求出结果.【题目详解】方程,,或,解得或.故答案为或.【题目点拨】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.12、【解题分析】

先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【题目详解】,.,因此,,故答案为:.【题目点拨】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.13、3.5.【解题分析】

根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【题目详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【题目点拨】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.14、3【解题分析】

根据点到直线的距离公式,代值求解即可.【题目详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【题目点拨】本题考查点到直线的距离公式,属基础题.15、【解题分析】

把直线方程化为斜截式,可得它在轴上的截距.【题目详解】解:直线,即,故它在轴上的截距是4,故答案为:.【题目点拨】本题主要考查直线方程的几种形式,属于基础题.16、【解题分析】

由,结合三角函数线,即可求解,得到答案.【题目详解】如图所示,因为,所以满足的的取值范围为.【题目点拨】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)二面角的余弦值为.【解题分析】

(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【题目详解】(1)证明:作于点,连接,如下图所示:因为侧面底面ABCD,则底面ABCD,因为为正三角形,则,所以,即,又因为,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因为,所以,即为中点.由等腰三角形三线合一可知,在中,由等腰三角形三线合一可得,所以均为边长为2的等边三角形,取中点,连接,如下图所示:由题意可知,即为二面角的平面角,所以在中由余弦定理可得,即二面角的余弦值为.【题目点拨】本题考查了线面垂直的判定定理,面面垂直的性质应用,二面角夹角的去找法及由余弦定理求二面角夹角的余弦值,属于中档题.18、(1)π3;(2)3【解题分析】试题分析:(1)先根据条件b2+c2=a2+bc结合余弦定理求出cosA试题解析:(1)因为b2所以cosA=又因为A∈(0,π),所以A=π(2)解:因为cosB=63所以sinB=由正弦定理asin得.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系19、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解题分析】

(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最大值,进而可求出结果.【题目详解】(1)记该人在A公司第年收入为,在B公司连续工作年收入为,由题意可得:,,,;(2)由(1),当时,该人在A公司工资收入的总量为:(元);该人在B公司工资收入的总量为:(元)显然A公司工资总量高,所以应选择A公司;(3)令,则原问题即等价于求的最大值;当时,,若,则,即,解得;又,所以,因此,当时,;当时,.所以是数列的最大项,(元),即在A公司工作比在B公司工作的月工资收入最多可以多元.【题目点拨】本题主要考查数列的应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.20、(I);(II)3,.【解题分析】

(I)利用降次公式和辅助角公式化简解析式,由此求得的最小正周期.(II)根据函数的解析式,以及的取值范围,结合三角函数值域的求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论