版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水四校2024届高一数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值为A.4 B.5 C.6 D.72.函数的定义域为()A. B. C. D.3.在中,设角,,的对边分别是,,,若,,,则其面积等于()A. B. C. D.4.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.5.设等比数列的前项和为,若,则()A. B.2 C. D.6.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c7.一个正方体的体积是8,则这个正方体的内切球的表面积是()A.8π B.6π C.4π D.π8.已知变量满足约束条件,则的最大值为()A.8 B.7 C.6 D.49.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.10.若直线与圆相切,则的值为A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的取值范围是________.12.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).13.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.14.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.15.已知x,y满足,则的最大值为________.16.已知,,是与的等比中项,则最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.18.现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求被选中的概率;(2)求和不全被选中的概率.19.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.20.已知,a,b,c分别为角A,B,C的对边,且,,,求角A的大小.21.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】试题分析:因为,而,所以当时,取得最大值5,选B.【考点】正弦函数的性质、二次函数的性质【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.2、A【解题分析】
根据对数函数的定义域直接求解即可.【题目详解】由题知函数,所以,所以函数的定义域是.故选:A.【题目点拨】本题考查了对数函数的定义域的求解,属于基础题.3、C【解题分析】
直接利用三角形的面积的公式求出结果.【题目详解】解:中,角,,的对边边长分别为,,,若,,,则,故选:.【题目点拨】本题考查的知识要点:三角形面积公式的应用及相关的运算问题,属于基础题.4、B【解题分析】
根据求出的范围,再由区间长度比即可得出结果.【题目详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【题目点拨】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.5、C【解题分析】
根据等比数列前项和为带入即可。【题目详解】当时,不成立。当时,则,选择C【题目点拨】本题主要考查了等比数列的前项和,,属于基础题。6、D【解题分析】
根据不等式的性质判断.【题目详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【题目点拨】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.7、C【解题分析】设正方体的棱长为a,则=8,∴a=2.而此正方体的内切球直径为2,∴S表=4π=4π.选C.8、B【解题分析】
先画出满足约束条件的平面区域,然后求出目标函数取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【题目详解】满足约束条件的平面区域如下图所示:作直线把直线向上平移可得过点时最小当,时,取最大值1,故答案为1.【题目点拨】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.9、B【解题分析】
取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【题目详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【题目点拨】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.10、D【解题分析】圆的圆心坐标为,半径为1,∵直线与圆相切,∴圆心到直线的距离,即,解得,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用反函数的运算法则,定义及其性质,求解即可.【题目详解】由,得所以,又因为,所以.故答案为:【题目点拨】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.12、①②④【解题分析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【题目详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【题目点拨】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.13、【解题分析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【题目详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【题目点拨】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.14、【解题分析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【题目详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【题目点拨】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.15、6【解题分析】
作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【题目详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、1【解题分析】
根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【题目详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【题目点拨】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【题目详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【题目点拨】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.18、(1);(2).【解题分析】
(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间{,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用表示“恰被选中”这一事件,则{,}事件由6个基本事件组成,因而.(2)用表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于{},事件有3个基本事件组成,所以,由对立事件的概率公式得.19、(1)(2)3【解题分析】
(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【题目详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【题目点拨】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.20、【解题分析】
由正弦定理得,即得,再利用余弦定理求解.【题目详解】因为在三角形ABC中,由正弦定理得.又因为,所以得,由余弦定理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国汽车窗帘遮物帘行业供需状况发展战略规划分析报告
- 2024-2030年中国汽车注塑模具行业发展趋势预测竞争战略分析报告
- 2024-2030年中国汽车内饰顶衬总成行业供需状况发展战略规划分析报告
- 2022年大学植物生产专业大学物理下册模拟考试试卷B卷-附解析
- 冀教版四年级上册数学第七单元 垂线和平行线 测试卷附答案【基础题】
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷及参考答案【基础题】
- 2022年大学力学专业大学物理二期末考试试卷A卷-附解析
- 2022年大学水利专业大学物理下册月考试卷D卷-附解析
- 一次性使用医用口罩性能评估方案
- 科技园区基础工程施工组织方案
- 医学与大数据:信息技术在医疗中的应用
- 2024年室内装饰设计师(高级工)考试复习题库(含答案)
- 教育培训行业2024年生产与制度改革方案
- PCB文字喷印工艺
- 2024年廖俊波同志先进事迹心得体会教师4篇
- 高考物理系统性复习 (能力提高练) 第五节 实验:探究小车速度随时间变化的规律(附解析)
- 眼科护理中的孕妇与产妇护理
- 业主业主委员会通用课件
- 了解金融市场和金融产品
- 南京理工大学2015年613物理化学(含答案)考研真题
- 初中数学应用题解题思路分享
评论
0/150
提交评论