安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题含解析_第1页
安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题含解析_第2页
安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题含解析_第3页
安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题含解析_第4页
安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省芜湖市城南实验中学2024届高一数学第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线是圆在处的切线,点是圆上的动点,则点到直线的距离的最小值等于()A.1 B. C. D.22.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.3.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.4.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F35.已知则的最小值是()A. B.4 C. D.56.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.若直线与平面相交,则()A.平面内存在无数条直线与直线异面B.平面内存在唯一的一条直线与直线平行C.平面内存在唯一的一条直线与直线垂直D.平面内的直线与直线都相交8.某种彩票中奖的概率为,这是指A.买10000张彩票一定能中奖B.买10000张彩票只能中奖1次C.若买9999张彩票未中奖,则第10000张必中奖D.买一张彩票中奖的可能性是9.已知向量,则与的夹角为()A. B. C. D.10.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,,,,则________.12.若复数z满足z⋅2i=z2+1(其中i13.已知,则的最小值是__________.14.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.15.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.16.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.18.已知函数.(1)求的单调增区间;(2)当时,求的最大值、最小值.19.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.20.已知,(1)求;(2)若,求.21.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持岁以下岁以上(含岁)(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

先求得切线方程,然后用点到直线距离减去半径可得所求的最小值.【题目详解】圆在点处的切线为,即,点是圆上的动点,圆心到直线的距离,∴点到直线的距离的最小值等于.故选D.【题目点拨】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题.2、B【解题分析】

通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【题目详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【题目点拨】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.3、A【解题分析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4、A【解题分析】

通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【题目详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【题目点拨】本题考查进制的转化,只需按照流程执行即可.5、C【解题分析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【题目详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6、D【解题分析】

先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【题目详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【题目点拨】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】

根据空间中直线与平面的位置关系,逐项进行判定,即可求解.【题目详解】由题意,直线与平面相交,对于A中,平面内与无交点的直线都与直线异面,所以有无数条,正确;对于B中,平面内的直线与要么相交,要么异面,不可能平行,所以,错误;对于C中,平面内有无数条平行直线与直线垂直,所以,错误;对于D中,由A知,D错误.故选A.【题目点拨】本题主要考查了直线与平面的位置关系的应用,其中解答中熟记直线与平面的位置关系,合理判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8、D【解题分析】

彩票中奖的概率为,只是指中奖的可能性为【题目详解】彩票中奖的概率为,只是指中奖的可能性为,不是买10000张彩票一定能中奖,概率是指试验次数越来越大时,频率越接近概率.所以选D.【题目点拨】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,是否中奖是随机事件.9、D【解题分析】

根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【题目详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【题目点拨】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.10、C【解题分析】

本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【题目详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】

在中,利用余弦定理得到,即可求解,得到答案.【题目详解】由余弦定理可得,解得.故答案为:7.【题目点拨】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、1【解题分析】设z=a+bi,a,b∈R,则由z⋅2则-2b=a2+b2+12a=013、【解题分析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.14、【解题分析】

设点,由和列方程组解出、的值,可得出向量的坐标.【题目详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【题目点拨】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.15、【解题分析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.16、【解题分析】

先结合求出,再由求解即可【题目详解】由,则故答案为:【题目点拨】本题考查扇形的弧长和面积公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】

(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【题目详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.18、(1),(2)【解题分析】

(1)首先利用三角函数恒等变换将化简为,再求其单调增区间即可.(2)根据,求出,再求的最值即可.【题目详解】(1),.的单调增区间为.(2)因为,所以.所以.当时,,当时,.【题目点拨】本题主要考查三角函数恒等变换的应用,同时考查三角函数的单调区间和最值,熟练掌握三角函数的公式为解题的关键,属于中档题.19、(1)见解析;(2)见解析.【解题分析】

(1)连接,证明后即得线面平行;(2)可证明平面,然后得面面垂直.【题目详解】(1)如图,连接,∵分别是中点,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【题目点拨】本题考查证明线面平行和面面垂直,掌握线面平行和面面垂直的判定定理是解题关键.20、(1)(2)【解题分析】

(1)两边平方可得,根据同角公式可得,;(2)根据两角和的正切公式,计算可得结果.【题目详解】(1)因为,所以,即.因为,所以,所以,故.(2)因为,所以,所以.【题目点拨】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.21、(1)120;(2).【解题分析】

(1)参与调查的总人数为20000,其中从持“不支持”态度的人数5000中抽取了30人,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论