2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题含解析_第1页
2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题含解析_第2页
2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题含解析_第3页
2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题含解析_第4页
2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省肥东高级中学数学高一第二学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:已知对呈线性相关关系,且回归方程为,工作人员不慎将表格中的第一个数据遗失,该数据为()A.28 B.30 C.32 D.352.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能3.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.4.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.5.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.6.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样7.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.138.若集合,,则(

)A. B. C. D.9.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.-0.5 D.-310.若,则与夹角的余弦值为()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.12.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.13.直线的倾斜角为__________.14.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.15.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.16.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l的方程为.(1)求过点且与直线l垂直的直线方程;(2)求直线与的交点,且求这个点到直线l的距离.18.已知数列的前项和为,且满足.(1)求证:数列是等比数列;(2)设,数列的前项和为,求证:.19.已知数列满足:,,.(1)求、、;(2)求证:数列为等比数列,并求其通项公式;(3)求和.20.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.21.如图1,在直角梯形中,,,点在上,且,将沿折起,使得平面平面(如图2).为中点(1)求证:;(2)求四棱锥的体积;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由回归方程经过样本中心点,求得样本平均数后代入回归方程即可求得第一组的数值.【题目详解】设第一组数据为,则,,根据回归方程经过样本中心点,代入回归方程,可得,解得,故选:B.【题目点拨】本题考查了回归方程的性质及简单应用,属于基础题.2、B【解题分析】

由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【题目详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.3、D【解题分析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.4、D【解题分析】

不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【题目详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【题目点拨】本题主要考查利用不等式的性质判断不等关系,属于基础题.5、A【解题分析】

根据向量的数量积结合基本不等式即可.【题目详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【题目点拨】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题6、C【解题分析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.7、C【解题分析】

由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【题目详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【题目点拨】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.8、B【解题分析】

通过集合B中,用列举法表示出集合B,再利用交集的定义求出.【题目详解】由题意,集合,所以故答案为:B【题目点拨】本题主要考查了集合的表示方法,以及集合的运算,其中熟记集合的表示方法,以及准确利用集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】

因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D10、A【解题分析】

根据向量的夹角公式,准确运算,即可求解,得到答案.【题目详解】由向量,则与夹角的余弦值为,故选A.【题目点拨】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设,由动点满足(其中和是正常数,且),可得,化简整理可得.【题目详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【题目点拨】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.12、【解题分析】

利用正弦定理得到,再根据有两解得到,计算得到答案.【题目详解】由正弦定理得:若有两解:故答案为【题目点拨】本题考查了正弦定理,有两解,意在考查学生的计算能力.13、【解题分析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率14、.【解题分析】

从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.15、2【解题分析】

根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【题目详解】由题意,可得,即,解得.【题目点拨】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】试题分析:由题意得,解得,故答案为.考点:分层抽样.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解题分析】

(1)与l垂直的直线方程可设为,再将点代入方程可得;(2)先求两直线的交点,再用点到直线的距离公式可得点到直线l的距离.【题目详解】解:(1)设与直线垂直的直线方程为,把代入,得,解得,∴所求直线方程为.(2)解方程组得∴直线与的交点为,点到直线的距离.【题目点拨】本题考查两直线垂直时方程的求法和点到直线的距离公式.18、(1)见证明;(2)见证明【解题分析】

(1)由,得,两式作差可得,利用等比数列的定义,即可作出证明;(2)由(1)可得,得到,利用裂项法求得数列的和,即可作出证明.【题目详解】(1)证明:由,得,两式作差可得:,即,即,又,得,所以数列是首项为,公比为的等比数列;(2)由(1)可得,数列的通项公式为,又由,所以.所以.【题目点拨】本题主要考查了等比数列的定义,以及数列“裂项法”求和的应用,其中解答中熟记等比数列的定义和通项,以及合理利用数列的“裂项法”求得数列的前n项和是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1);(2)证明见解析;(3).【解题分析】

(1)直接带入递推公式即可(2)证明等于一个常数即可。(3)根据(2)的结果即可求出,从而求出。【题目详解】(1),,可得;,;(2)证明:,可得数列为公比为,首项为等比数列,即;(3)由(2)可得,.【题目点拨】本题主要考查了根据通项求数列中的某一项,以及证明是等比数列和求前偶数项和的问题,在这里主要用了分组求和的方法。20、(1)见解析;(2)乙机床加工的零件更符合要求.【解题分析】

(1)直接由平均数和方差的计算公式代入数据进行计算即可.

(2)由平均数和方差各自说明数据的特征,做出判断.【题目详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,

因此乙机床加工的零件更符合要求.【题目点拨】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.21、(1)证明见解析(2)(3)存在,【解题分析】

(1)证明DG⊥AE,再根据面面垂直的性质得出DG⊥平面ABCE即可证明(2)分别计算DG和梯形ABCE的面积,即可得出棱锥的体积;(3)过点C作C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论