




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省丘北县第一中学高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为等差数列的前项和,且,.记,其中表示不超过的最大整数,如,.数列的前项和为()A. B. C. D.2.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]3.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.4.若数列满足,,则()A. B. C.18 D.205.已知两点,,则()A. B. C. D.6.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.7.已知,函数的最小值是()A.4 B.5 C.8 D.68.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为9.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.10.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=0二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.12.已知数列满足,若,则数列的通项______.13.已知,是夹角为的两个单位向量,向量,,若,则实数的值为________.14.已知函数的定义域为,则实数的取值范围为_____.15.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.16.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.18.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.19.数列的前项和.(1)求的通项公式;(2)设,求数列的前项和,并求使成立的实数最小值.20.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.21.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用等差数列的通项公式与求和公式可得,再利用,可得,,.即可得出.【题目详解】解:为等差数列的前项和,且,,.可得,则公差.,,则,,,.数列的前项和为:.故选:.【题目点拨】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.2、C【解题分析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.3、B【解题分析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【题目详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【题目点拨】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.4、A【解题分析】
首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【题目详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【题目点拨】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.5、C【解题分析】
直接利用两点间距离公式求解即可.【题目详解】因为两点,,则,故选.【题目点拨】本题主要考查向量的模,两点间距离公式的应用.6、A【解题分析】
由下确界定义,,的最小值是,由余弦函数性质可得.【题目详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【题目点拨】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.7、A【解题分析】试题分析:由题意可得,满足运用基本不等式的条件——一正,二定,三相等,所以,故选A考点:利用基本不等式求最值;8、C【解题分析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【题目详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【题目点拨】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.9、C【解题分析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C10、A【解题分析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【题目详解】解:,可得周期,,则满足的的个数为.故答案为:1.【题目点拨】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.12、【解题分析】
直接利用数列的递推关系式和叠加法求出结果.【题目详解】因为,所以当时,.时也成立.所以数列的通项.【题目点拨】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.13、【解题分析】
由题意得,且,,由=,解得即可.【题目详解】已知,是夹角为的两个单位向量,所以,得,若解得故答案为【题目点拨】本题考查了向量数量积的运算性质,考查了计算能力,属于基础题.14、【解题分析】
根据对数的真数对于0,再结合不等式即可解决.【题目详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【题目点拨】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.15、【解题分析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.16、(4,5)4.【解题分析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【题目详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【题目点拨】本题考查了过两条直线交点的直线系方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)二面角图见解析;【解题分析】
(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【题目详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【题目点拨】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.18、(1);(2)【解题分析】
(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【题目详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【题目点拨】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。19、(1);(2),.【解题分析】
(1)由已知可先求得首项,然后由,得,两式相减后可得数列的递推式,结合得数列是等比数列,从而易得通项公式;(2)对数列可用错位相减法求其和.不等式恒成立,可转化为先求的最大值.【题目详解】(1)由得.由,可知,可得,即.因为,所以,故因此是首项为,公比为的等比数列,故.(2)由(1)知.所以①两边同乘以得②①②相减得从而于是,当是奇数时,,因为,所以.当是偶数时,因此.因为,所以,的最小值为.【题目点拨】本题考查等比数列的通项公式,前项和公式,考查错位相减法求和.适用错位相减法求和的数列一般是,其中是等差数列,是等比数列.20、(Ⅰ),;(Ⅱ)【解题分析】
(Ⅰ)根据点,的坐标即可求出,从而可求出;(Ⅱ)可以求出,根据即可得出,解出即可.【题目详解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【题目点拨】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.21、(1);(2).【解题分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产业园区厂房租赁转售合同范本
- 个人财务规划与投资管理服务合同
- 车辆租赁合同续租条款补充协议
- 医疗机构专用复印纸及医疗耗材采购合同
- 2025年综合类-内分泌学(医学高级)-下丘脑垂体疾病历年真题摘选带答案(5卷单选题百道集合)
- 2025年综合类-兽医考试-兽医防治员(中级)历年真题摘选带答案(5卷单选题百道集合)
- 2025年综合类-临床医学检验-临床基础检验历年真题摘选带答案(5卷单选100题合辑)
- 2025年综合类-中西医结合儿科学-中西医结合儿科学-呼吸系统疾病历年真题摘选带答案(5套单选100题合辑)
- 2025年综合类-中级水路运输-运输企业资产评估历年真题摘选带答案(5卷单选100题合辑)
- 2025年综合类-中级人力资源管理-第十六章社会保险历年真题摘选带答案(5卷单选100题合辑)
- 2025江西德安万年青环保有限公司市场部区域经理招聘4人笔试历年参考题库附带答案详解
- 怀特海《教育的目的》读书分享
- 2025年校长职级考试题及答案
- 统借统还资金管理办法
- 国家能源集团采购管理规定及实施办法知识试卷
- 2025年广西继续教育公需科目考试试题和答案
- 风电安全生产事故的心得体会
- 2024年广州市南沙区社区专职招聘考试真题
- 健康体检服务投标方案投标文件(技术方案)
- 山东医药技师学院招聘笔试真题2024
- 医院行风建设培训
评论
0/150
提交评论