安徽省池州市2024届高一数学第二学期期末综合测试模拟试题含解析_第1页
安徽省池州市2024届高一数学第二学期期末综合测试模拟试题含解析_第2页
安徽省池州市2024届高一数学第二学期期末综合测试模拟试题含解析_第3页
安徽省池州市2024届高一数学第二学期期末综合测试模拟试题含解析_第4页
安徽省池州市2024届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市2024届高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.2.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度3.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为4.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.45.已知,且,则实数的值为()A.2 B. C.3 D.6.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度7.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥8.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形9.已知直线与圆相切,则的值是()A.1 B. C. D.10.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.12.己知为数列的前项和,且,则_____.13.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为14.已知数列是等差数列,若,,则________.15.直线在轴上的截距是__________.16.若,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求;(2)求;(3)求18.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.19.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付元,没有奖金;第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的倍.(1)工作天,记三种付费方式薪酬总金额依次为、、,写出、、关于的表达式;(2)该学生在暑假期间共工作天,他会选择哪种付酬方式?20.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.21.如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

模拟执行循环体的过程,即可得到结果.【题目详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【题目点拨】本题考查程序框图中循环体的执行,属基础题.2、D【解题分析】

先将化为,根据函数图像的平移原则,即可得出结果.【题目详解】因为,所以只需将的图象向右平移个单位.【题目点拨】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.3、C【解题分析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【题目详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【题目点拨】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.4、C【解题分析】

数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【题目详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【题目点拨】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.5、D【解题分析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【题目详解】由题意又解得故选:【题目点拨】本题考查两角和与差的正弦公式,属于基础题.6、B【解题分析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.7、D【解题分析】

当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D8、A【解题分析】

已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【题目详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【题目点拨】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.9、D【解题分析】

利用直线与圆相切的条件列方程求解.【题目详解】因为直线与圆相切,所以,,,故选D.【题目点拨】本题考查直线与圆的位置关系,通常利用圆心到直线的距离与圆的半径的大小关系进行判断,考查运算能力,属于基本题.10、B【解题分析】

利用折线图的性质,结合各选项进行判断,即可得解.【题目详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【题目点拨】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、③【解题分析】

利用等比数列的通项公式,解不等式后可得结论.【题目详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【题目点拨】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).12、【解题分析】

根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【题目详解】由得:,即:数列是公差为的等差数列又,解得:本题正确结果:【题目点拨】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.13、【解题分析】

试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.14、【解题分析】

求出公差,利用通项公式即可求解.【题目详解】设公差为,则所以故答案为:【题目点拨】本题主要考查了等差数列基本量的计算,属于基础题.15、【解题分析】

把直线方程化为斜截式,可得它在轴上的截距.【题目详解】解:直线,即,故它在轴上的截距是4,故答案为:.【题目点拨】本题主要考查直线方程的几种形式,属于基础题.16、【解题分析】

将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【题目详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【题目点拨】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】

利用正弦的二倍角公式,余弦和正切的两角和公式计算即可得到答案.【题目详解】因为,,所以.(1);(2);(3)【题目点拨】本题考查正弦的二倍角公式,余弦和正切的两角和公式的应用,属于简单题.18、(1);(2).【解题分析】

(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【题目详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1),,;(2)第三种,理由见解析.【解题分析】

(1)三种支付方式每天支付的金额依次为数列、、,可知数列为常数数列,数列是以为首项,以为公差的等差数列,数列是以为首项,以为公比的等比数列,利用等差数列和等比数列求和公式可计算出、、关于的表达式;(2)利用(1)中的结论,计算出、、的值,比较大小后可得出结论.【题目详解】(1)设三种支付方式每天支付的金额依次为数列、、,它们的前项和分别为、、,第一种付酬方式每天所付金额组成数列为常数列,且,所以;第二种付酬方式每天所付金额组成数列是以为首项,以为公差的等差数列,所以;第三种付酬方式每天所付金额组成数列是以为首项,以为公比的等比数列,所以;(2)由(1)知,当时,,,,则.因此,该学生在暑假期间共工作天,选第三种付酬方式较好.【题目点拨】本题考查等差数列和等比数列的应用,涉及等差数列和等比数列求和公式的应用,考查计算能力,属于中等题.20、(1)3;(2)1.【解题分析】

(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【题目详解】(1)在中,由余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论