版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省宜宾市兴文县高级中学数学高一下期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.2.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.3.如图,函数的图像是()A. B.C. D.4.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.46.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为7.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.8.已知集合,,则A. B. C. D.9.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.210.已知数列是首项为,公差为的等差数列,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,则___________.12.已知向量,,若,则实数__________.13.执行如图所示的程序框图,则输出结果_____.14.已知数列,,若该数列是减数列,则实数的取值范围是__________.15.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.16.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.18.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.20.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.21.已知A,B,C是的内角,a,b,c分别是其对边长,向量,,且.(1)求角的大小;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。2、B【解题分析】
成等比数列,可得,又,可得,利用余弦定理即可得出.【题目详解】解:成等比数列,,又,,则故选B.【题目点拨】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.3、B【解题分析】
根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【题目详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【题目点拨】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.4、A【解题分析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件5、B【解题分析】
根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【题目详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【题目点拨】本题属于基础题,利用直线的平行关系,斜率相等求解参数。6、C【解题分析】
由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【题目详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【题目点拨】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.7、B【解题分析】
由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【题目详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【题目点拨】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8、C【解题分析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。9、D【解题分析】
根据直观图可计算其面积为,原的面积为,由得结论.【题目详解】由题意可得,所以由,即.故选:D.【题目点拨】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.10、C【解题分析】
本题首先可根据首项为以及公差为求出数列的通项公式,然后根据以及数列的通项公式即可求出答案.【题目详解】因为数列为首项,公差的等差数列,所以,因为所以,,故选C.【题目点拨】本题考查如何判断实数为数列中的哪一项,主要考查等差数列的通项公式的求法,等差数列的通项公式为,考查计算能力,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】
利用递推公式求解即可.【题目详解】由题得.故答案为2【题目点拨】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解题分析】
根据平面向量时,列方程求出的值.【题目详解】解:向量,,若,则,即,解得.故答案为:.【题目点拨】本题考查了平面向量的坐标运算应用问题,属于基础题.13、1【解题分析】
弄清程序框图的算法功能是解题关键.由模拟执行程序,可知,本程序的算法功能是计算的值,依据数列求和方法——并项求和,即可求出.【题目详解】根据程序框图,可得程序框图的功能是计算并输出,输出的为1.【题目点拨】本题主要考查了含有循环结构的程序框图的算法功能的理解以及数列求和的基本方法——并项求和法的应用.正确得到程序框图的算法功能,选择合适的求和方法是解题的关键.14、【解题分析】
本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【题目详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【题目点拨】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.15、【解题分析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【题目详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【题目点拨】本题考查直线的方程,属于基础题.16、4【解题分析】
直接利用分层抽样的比例关系得到答案.【题目详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【题目点拨】本题考查了分层抽样的相关计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)求得,在中运用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面积公式,可得所求值.【题目详解】(1)由题意可得,在中,由余弦定理可得,则;(2)在中,,,,的面积为.【题目点拨】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.18、(1)(2)【解题分析】
(1)由题可得平面,故,从而求得三棱锥的体积;(2)连接交于,连接交于,连结,由平面可得,由正三棱柱的性质可得,从而得到的值.【题目详解】⑴因为为正三棱柱所以平面⑵连接交于,连接交于,连结因为//平面,平面,平面平面,所以,因为为正三棱柱,所以侧面和侧面为平行四边形,从而有为的中点,于是为的中点所以,因为为边的中点,所以也为边中点,从而【题目点拨】本题考查三棱锥的体积,线面垂直的性质,正三棱柱的性质等知识,属于中档题.19、(1);(2)4.【解题分析】
(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可.(2)利用前n项和公式直接求解即可.【题目详解】(1)设数列的公差为,∴,故.(2),∴,解得或(舍去),∴.【题目点拨】本题考查等差数列的通项公式及项数的求法,考查了前n项和公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.20、(1)时,时,;(2);【解题分析】
(1)当时,求出,再利用错位相减法,求出的前项和;(2)求出的表达式,对,的大小进行分类讨论,从而求出数列的极限.【题目详解】(1)当时,可得,当时,得到,所以,当时,所以,两边同乘得上式减去下式得,所以所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光伏组件回收产业链分析
- 二零二五版天然气运输合同协议书范本模板(含运输保险)2篇
- 二零二五年度行政协议指导大全:环境保护合作协议3篇
- 婚庆行业安全生产工作总结
- 2025版物流企业物流外包合作协议6篇
- 二零二五年度绿色能源装备制造个人股东股权转让合同2篇
- 光纤通信技术应用知到智慧树章节测试课后答案2024年秋四川职业技术学院
- 二零二五版实习期员工劳动合同-实习期间安全防护3篇
- 二零二五年度酒店客房装修与设施更新合同4篇
- 二零二五版债转股投资合作协议书(产业链整合)3篇
- 北京市北京四中2025届高三第四次模拟考试英语试卷含解析
- 2024年快递行业无人机物流运输合同范本及法规遵循3篇
- 伤残抚恤管理办法实施细则
- 2024-2030年中国产教融合行业市场运营态势及发展前景研判报告
- 2024年微生物检测试剂行业商业计划书
- 高中英语选择性必修一单词表
- 物业公司介绍
- (正式版)SHT 3551-2024 石油化工仪表工程施工及验收规范
- 【永辉超市公司员工招聘问题及优化(12000字论文)】
- 中国直销发展四个阶段解析
- 2024届浙江省宁波市镇海区镇海中学高一物理第一学期期末质量检测试题含解析
评论
0/150
提交评论