2024届重庆市大足区高一数学第二学期期末综合测试试题含解析_第1页
2024届重庆市大足区高一数学第二学期期末综合测试试题含解析_第2页
2024届重庆市大足区高一数学第二学期期末综合测试试题含解析_第3页
2024届重庆市大足区高一数学第二学期期末综合测试试题含解析_第4页
2024届重庆市大足区高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市大足区高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为的是()A. B. C. D.2.圆关于原点对称的圆的方程为()A. B.C. D.3.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.4.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.5.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.97.已知,那么()A. B. C. D.8.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A.4 B. C. D.9.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.10.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.12.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.13.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.14.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.15.设是等差数列的前项和,若,,则公差(___).16.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.2456825355575三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,,.(1)求的最小值及相应的t的值;(2)若与共线,求实数m.18.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.19.(1)证明:;(2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,;(3)利用(2)的结论判断是否为有理数?20.某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:单价(元)88.28.48.68.89销量(件)908483807568(1)求销量(件)关于单价(元)的线性回归方程;(2)若单价定为10元,估计销量为多少件;(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?参考公式:,.参考数据:,21.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由函数的最小正周期为,逐个选项运算即可得解.【题目详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【题目点拨】本题考查了三角函数的最小正周期,属基础题.2、D【解题分析】

根据已知圆的方程可得其圆心,进而可求得其关于原点对称点,利用圆的标准方程即可求解.【题目详解】由圆,则圆心为,半径,圆心为关于原点对称点为,所以圆关于原点对称的圆的方程为.故选:D【题目点拨】本题考查了根据圆心与半径求圆的标准方程,属于基础题.3、B【解题分析】

根据正弦定理,代入数据即可。【题目详解】由正弦定理,得:,即,即:解得:选B。【题目点拨】此题考查正弦定理:,代入数据即可,属于基础题目。4、B【解题分析】

由正弦定理可得3sinBsinA=4sin【题目详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【题目点拨】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.5、A【解题分析】

由下确界定义,,的最小值是,由余弦函数性质可得.【题目详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【题目点拨】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.6、C【解题分析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.7、C【解题分析】试题分析:由,得.故选B.考点:诱导公式.8、B【解题分析】

由正弦定理可得,,代入即可求解.【题目详解】∵,,∴由正弦定理可得,,则.故选:B.【题目点拨】本题考查正弦定理的简单应用,考查函数与方程思想,考查运算求解能力,属于基础题.9、B【解题分析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,

∴故选B10、A【解题分析】

由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【题目详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【题目点拨】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【题目详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【题目点拨】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.12、【解题分析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.13、【解题分析】

设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【题目详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【题目点拨】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.14、1【解题分析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【题目详解】解:,可得周期,,则满足的的个数为.故答案为:1.【题目点拨】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.15、【解题分析】

根据两个和的关系得到公差条件,解得结果.【题目详解】由题意可知,,即,又,两式相减得,.【题目点拨】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.16、60【解题分析】

由样本中心过线性回归方程,求得,,代入即可求得【题目详解】由题知:,,将代入得故答案为:60【题目点拨】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)时,最小值为;(2).【解题分析】

(1)利用向量的模长公式计算出的表达式然后求最值.

(2)先求出的坐标,利用向量平行的公式得到关于m的方程,可解得答案.【题目详解】(1)∵,

∴当时,取得最小值.(2).∵与共线,∴,则.【题目点拨】本题考查向量的模长的计算以及其最值和根据向量平行求参数的值,属于基础题.18、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解题分析】

(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【题目详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.19、(1)见解析;(2)见解析;(3)不是【解题分析】

(1),利用两角和的正弦和二倍角公式,进行证明;(2)对分奇偶,即和两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将表示出来,然后判断其每一项都为无理数,从而得到答案.【题目详解】(1)所以原式得证.(2)为奇数时,时,,其中,成立时,,其中,成立时,,其中,成立,则当时,所以得到因为均为整数,所以也均为整数,故原式成立;为偶数时,时,,其中,时,,其中,成立,时,,其中,成立,则当时,所以得到其中,因为均为整数,所以也均为整数,故原式成立;综上可得:对任何正整数,存在多项式函数,使得对所有实数均成立,其中,均为整数,当为奇数时,,当为偶数时,;(3)由(2)可得其中均为有理数,因为为无理数,所以均为无理数,故为无理数,所以不是有理数.【题目点拨】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.20、(1)(2)当销售单价定为10元时,销量为50件(3)要使利润达到最大,应将价格定位8.75元.【解题分析】

(1)由均值公式求得均值,,再根据给定公式计算回归系数,得回归方程;(2)在(1)的回归方程中令,求得值即可;(3)由利润可化为的二次函数,由二次函数知识可得利润最大值及此时的值.【题目详解】(1)由题意可得,,则,从而,故所求回归直线方程为.(2)当时,,故当销售单价定为10元时,销量为50件.(3)由题意可得,,.故要使利润达到最大,应将价格定位8.75元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论