2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题含解析_第1页
2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题含解析_第2页
2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题含解析_第3页
2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题含解析_第4页
2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省汉中市部分学校高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足:则A. B. C. D.2.已知角的终边过点,则()A. B. C. D.3.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.4.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.605.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.406.已知,若,则的值是().A.-1 B.1 C.2 D.-27.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.8.在△ABC中,D是边BC的中点,则=A. B. C. D.9.已知向量,,,则实数的值为()A. B. C.2 D.310.函数的最小正周期是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则.12.已知数列满足,若对任意都有,则实数的取值范围是_________.13.在三棱锥中,已知,,则三棱锥内切球的表面积为______.14.函数的部分图象如图所示,则函数的解析式为______.15.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.16.已知不等式x2-x-a>0的解集为x|x>3或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求的概率.18.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.19.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.20.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.21.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当弦AB被点P平分时,写出直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用向量的数量积运算及向量的模运算即可求出.【题目详解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故选D.【题目点拨】本题考查了向量的数量积运算和向量模的计算,属于基础题.2、D【解题分析】

首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【题目详解】由已知得,则.故选D【题目点拨】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.3、D【解题分析】

连续投两次骰子共有36种,求出满足情况的个数,即可求解.【题目详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【题目点拨】本题考查古典概型的概率,属于基础题.4、A【解题分析】

由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【题目详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【题目点拨】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.5、B【解题分析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.6、C【解题分析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【题目详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【题目点拨】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.7、C【解题分析】

由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【题目详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【题目点拨】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.8、C【解题分析】分析:利用平面向量的减法法则及共线向量的性质求解即可.详解:因为是的中点,所以,所以,故选C.点睛:本题主要考查共线向量的性质,平面向量的减法法则,属于简单题.9、A【解题分析】

将向量的坐标代入中,利用坐标相等,即可得答案.【题目详解】∵,∴.故选:A.【题目点拨】本题考查向量相等的坐标运算,考查运算求解能力,属于基础题.10、C【解题分析】

将函数化为,再根据周期公式可得答案.【题目详解】因为=,所以最小正周期.故选:C【题目点拨】本题考查了两角和的正弦公式的逆用,考查了正弦型函数的周期公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.考点:三角恒等变换.12、【解题分析】

由题若对于任意的都有,可得解出即可得出.【题目详解】∵,若对任意都有,

∴.

∴,

解得.

故答案为.【题目点拨】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.13、【解题分析】

先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【题目详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【题目点拨】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.14、【解题分析】

根据三角函数图象依次求得的值.【题目详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【题目点拨】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.15、.【解题分析】

根据等积法可得∴16、6【解题分析】

由题意可知-2,3为方程x2【题目详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【题目点拨】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)先设在B组中看不清的那个同学的分数为x,分别求得两组的平均数,再由平均数间的关系求解.(2)先求出从A组这5名学生中随机抽取2名同学所有方法数,再用列举的方法得到满足求的方法数,再由古典概型求解.【题目详解】(1)设在B组中看不清的那个同学的分数为x由题意得解得x=88所以在B组5个分数超过85的有3个所以得分超过85分的概率是(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,则所有共有共10个其中满足求的有:共6个故|的概率为

【题目点拨】本题主要考查了平均数和古典概型概率的求法,还考查了运算求解的能力,属于中档题.18、(1)见解析(2)【解题分析】

(1)通过⊥,⊥来证明;(2)根据等体积法求解.【题目详解】(1)证明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即点到平面的距离为【题目点拨】本题考查线面垂直与点到平面的距离.线面垂直的证明要转化为线线垂直;点到平面的距离常规方法是作出垂线段求解,此题根据等体积法能简化计算.19、(1)(2)单调增区间为,;单调减区间为.【解题分析】

(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,即可得出该函数的解析式;(2)根据平移变换得出,再由函数的图象经过点,结合正弦函数的性质得出的最小值,进而得出,利用整体法结合正弦函数的单调性得出该函数在上的单调区间.【题目详解】解:(1)由已知函数的周期,,∴.(2)将的图象向左平移个长度单位得到的图象∴,∵函数的图象经过点∴,即∴,∴,∵,∴当,取最小值,此时最小值为此时,.令,则当或,即当或时,函数单调递增当,即时,函数单调递减.∴在上的单调增区间为,;单调减区间为.【题目点拨】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.20、(1)见解析;(2)见解析.【解题分析】

(1)连接,证明后即得线面平行;(2)可证明平面,然后得面面垂直.【题目详解】(1)如图,连接,∵分别是中点,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【题目点拨】本题考查证明线面平行和面面垂直,掌握线面平行和面面垂直的判定定理是解题关键.21、(1)(2)【解题分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论