2024届青海省西宁市部分学校数学高一下期末学业质量监测试题含解析_第1页
2024届青海省西宁市部分学校数学高一下期末学业质量监测试题含解析_第2页
2024届青海省西宁市部分学校数学高一下期末学业质量监测试题含解析_第3页
2024届青海省西宁市部分学校数学高一下期末学业质量监测试题含解析_第4页
2024届青海省西宁市部分学校数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届青海省西宁市部分学校数学高一下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆x-12+y-3A.1 B.2 C.2 D.32.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度3.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A.4 B. C. D.4.已知,满足,则()A. B. C. D.5.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.6.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.7.在中,已知,则的面积为()A. B. C. D.8.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.19.已知向量,且,则m=()A.−8 B.−6C.6 D.810.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.12.在数列中,,当时,.则数列的前项和是_____.13.已知,,是与的等比中项,则最小值为_________.14.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.15.若把写成的形式,则______.16.已知扇形的圆心角为,半径为5,则扇形的弧长_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)证明:;(2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,;(3)利用(2)的结论判断是否为有理数?18.已知数列的首项.(1)证明:数列是等比数列;(2)数列的前项和.19.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.20.如图,在四棱锥中,底面是正方形,底面,点是的中点,点是和的交点.(1)证明:平面;(2)求三棱锥的体积.21.正四面体是侧棱与底面边长都相等的正三棱锥,它的对棱互相垂直.有一个如图所示的正四面体,E,F,G分别是棱AB,BC,CD的中点.(1)求证:面EFG;(2)求异面直线EG与AC所成角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

先计算圆心到y轴的距离,再利用勾股定理得到弦长.【题目详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【题目点拨】本题考查了圆的弦长公式,意在考查学生的计算能力.2、B【解题分析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.3、B【解题分析】

由正弦定理可得,,代入即可求解.【题目详解】∵,,∴由正弦定理可得,,则.故选:B.【题目点拨】本题考查正弦定理的简单应用,考查函数与方程思想,考查运算求解能力,属于基础题.4、A【解题分析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【题目详解】已知,=,>0,进而得到.故答案为A.【题目点拨】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.5、A【解题分析】

直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A6、A【解题分析】

画出三点的图像,根据的斜率,求得直线斜率的取值范围.【题目详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【题目点拨】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.7、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.8、B【解题分析】

通过等差中项的性质即可得到答案.【题目详解】由于,故,故选B.【题目点拨】本题主要考查等差数列的性质,难度较小.9、D【解题分析】

由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【题目详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【题目点拨】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.10、B【解题分析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由三角函数的定义求出点的坐标,然后求向量的坐标.【题目详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【题目点拨】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.12、【解题分析】

先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【题目详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【题目点拨】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.13、1【解题分析】

根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【题目详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【题目点拨】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.14、【解题分析】

设点,由和列方程组解出、的值,可得出向量的坐标.【题目详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【题目点拨】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.15、【解题分析】

将角度化成弧度,再用象限角的表示方法求解即可.【题目详解】解:.故答案为:.【题目点拨】本题考查弧度与角度的互化,象限角的表示,属于基础题.16、【解题分析】

根据扇形的弧长公式进行求解即可.【题目详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【题目点拨】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)不是【解题分析】

(1),利用两角和的正弦和二倍角公式,进行证明;(2)对分奇偶,即和两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将表示出来,然后判断其每一项都为无理数,从而得到答案.【题目详解】(1)所以原式得证.(2)为奇数时,时,,其中,成立时,,其中,成立时,,其中,成立,则当时,所以得到因为均为整数,所以也均为整数,故原式成立;为偶数时,时,,其中,时,,其中,成立,时,,其中,成立,则当时,所以得到其中,因为均为整数,所以也均为整数,故原式成立;综上可得:对任何正整数,存在多项式函数,使得对所有实数均成立,其中,均为整数,当为奇数时,,当为偶数时,;(3)由(2)可得其中均为有理数,因为为无理数,所以均为无理数,故为无理数,所以不是有理数.【题目点拨】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.18、(1)证明见解析;(2).【解题分析】试题分析:(1)对两边取倒数得,化简得,所以数列是等比数列;(2)由(1)是等比数列.,求得,利用错位相减法和分组求和法求得前项和.试题解析:(1),又,数列是以为首项,为公比的等比数列.(2)由(1)知,,即,设,①则,②由①-②得,.又.数列的前项和.考点:配凑法求通项,错位相减法.19、(1),,;(2),.【解题分析】

(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【题目详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【题目点拨】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.20、(1)证明见解析;(2).【解题分析】

(1)在中,利用中位线性质得到,证明平面.(2)直接利用体积公式得到答案.【题目详解】在中,点是的中点,底面是正方形点为中点根据中位线性质得到,平面,故平面.(2)底面【题目点拨】本题考查了线面平行,三棱锥体积,意在考查学生的计算能力和空间想象能力.21、(1)证明见解析;(2)【解题分析】

(1)连接EF,FG,GE,通过三角形的中位线可得,进而可得面EFG;(2)由题可得为异面直线EG与AC所成角,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论