版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省淮阳县第一高级中学2024届数学高一下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知分别为内角的对边,若,b=则=()A. B. C. D.2.从一批产品中取出三件产品,设事件为“三件产品全不是次品”,事件为“三件产品全是次品”,事件为“三件产品不全是次品”,则下列结论正确的是()A.事件与互斥 B.事件与互斥C.任何两个事件均互斥 D.任何两个事件均不互斥3.如图,三棱柱中,侧棱底面ABC,,,,则异面直线与所成角的余弦值为()A. B. C. D.4.关于的不等式的解集为()A. B. C. D.5.已知直线,,若,则()A.2 B. C. D.16.将正整数排列如下:123456789101112131415……则图中数出现在()A.第行列 B.第行列 C.第行列 D.第行列7.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.8.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.109.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.10.在正方体中为底面的中心,为的中点,则异面直线与所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.12.设为等差数列,若,则_____.13.若点,关于直线l对称,那么直线l的方程为________.14.函数的图象在点处的切线方程是,则__________.15.函数的值域是______.16.已知向量,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:,.18.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.19.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.20.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.21.数列an,n∈N*各项均为正数,其前n项和为S(1)求证数列Sn2为等差数列,并求数列(2)设bn=24Sn4-1,求数列bn的前n
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【题目详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.2、B【解题分析】
根据互斥事件的定义,逐个判断,即可得出正确选项.【题目详解】为三件产品全不是次品,指的是三件产品都是正品,为三件产品全是次品,为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:与是互斥事件;与是包含关系,不是互斥事件;与是互斥事件,故选B.【题目点拨】本题主要考查互斥事件定义的应用.3、A【解题分析】
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知求与的坐标,由两向量所成角的余弦值求解异面直线与所成角的余弦值.【题目详解】如图,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知得:,,所以,.设异面直线与所成角,则故异面直线与所成角的余弦值为.故选:A【题目点拨】本题主要考查了利用空间向量求解线线角的问题,属于基础题.4、B【解题分析】
将不等式化为,等价于,解出即可.【题目详解】由原式得且,解集为,故选B.【题目点拨】本题考查分式不等式的解法,解分式不等式时,要求右边化为零,等价转化如下:;;;.5、D【解题分析】
当为,为,若,则,由此求解即可【题目详解】由题,因为,所以,即,故选:D【题目点拨】本题考查已知直线垂直求参数问题,属于基础题6、B【解题分析】
计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【题目详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【题目点拨】本题考查了数列的应用,计算首数字的通项公式是解题的关键.7、B【解题分析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【题目详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【题目点拨】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.8、C【解题分析】
画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【题目详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【题目点拨】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.9、B【解题分析】
根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【题目详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【题目点拨】本题考查了等比数列前项和的性质,考查了数学运算能力.10、B【解题分析】
取BC中点为M,连接OM,EM找出异面直线夹角为,在三角形中利用边角关系得到答案.【题目详解】取BC中点为M,连接OM,EM在正方体中为底面的中心,为的中点易知:异面直线与所成角为设正方体边长为2,在中:故答案选B【题目点拨】本题考查了立体几何里异面直线的夹角,通过平行找到对应的角是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先判断球心在上,再利用勾股定理得到半径,最后计算体积.【题目详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【题目点拨】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.12、【解题分析】
根据等差数列的性质:在等差数列中若则即可【题目详解】故答案为:【题目点拨】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。13、【解题分析】
利用直线垂直求出对称轴斜率,利用中点坐标公式求出中点,再由点斜式可得结果.【题目详解】求得,∵点,关于直线l对称,∴直线l的斜率1,直线l过AB的中点,∴直线l的方程为,即.故答案为:.【题目点拨】本题主要考查直线垂直的性质,考查了直线点斜式方程的应用,属于基础题.14、【解题分析】由导数的几何意义可知,又,所以.15、【解题分析】
将函数化为的形式,再计算值域。【题目详解】因为所以【题目点拨】本题考查三角函数的值域,属于基础题。16、【解题分析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【题目详解】由题意得,.,.,,.故答案为:.【题目点拨】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)可以预测产量为(吨)的生产能耗为(吨)【解题分析】
(1)根据表格中的数据,求出,,,代入回归系数的公式可求得,再根据回归直线过样本中心点即可求解.由(1)将代入即可求解.【题目详解】(1)由题意,根据表格中的数据,求得,,,,代入回归系数的公式,求得,则,故线性回归方程为.(2)由(1)可知,当时,,则可以预测产量为(吨)的生产能耗为(吨).【题目点拨】本题考查了线性回归方程,需掌握回归直线过样本中心点这一特征,考查了学生的计算能力,属于基础题.18、(1);(2).【解题分析】
(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【题目详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【题目点拨】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.19、(1)见解析;(2)见解析.【解题分析】
(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【题目详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【题目点拨】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.20、(1)见解析;(2)【解题分析】
(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求四棱锥的体积.【题目详解】(1)由已知,得,,由于,故,从而平面,又平面,所以平面平面.(2)设,则,所以,从而,也为等腰直角三角形,为正三角形,于是四棱锥的侧面积,解得,在平面内作,垂足为,由(1)知,平面,故,可得平面且,故四棱锥的体积.【题目点拨】本题考查了面面垂直的判定与证明,以及四棱锥的体积的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,着重考查了推理与论证能力,属于基础题.21、(1)证明见解析,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完善乡村教师培训体系与课程设计策略
- 教师教育转型的关键问题与解决路径
- 2024年限量产品常年买卖协议样本
- 2024商业融资协议格式
- 出租住房安全管理细化协议2024
- 简叙合同范本
- 2024指定车型免租金汽车租赁协议
- 临沂公司注销合同范本
- 公司建筑材料租赁合同范本
- 幼儿园装修改造协议2024年
- 高考数学小题狂练:每题都附有详细解析
- 浮动码头施工方案
- Poka-Yoke防错技术(完整版)
- 保安交接班记录表(2)
- 神明—EZflame火焰检测系统
- 个人简历求职简历课件.ppt
- 2018年江苏高考满分作文:在母语的屋檐下
- 新青岛版五四制2021-2022四年级科学上册实验指导
- 小学四年级音乐课程标准
- 双向细目表和单元测试卷及组卷说明
- 离子色谱法测定空气中二氧化硫
评论
0/150
提交评论