2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题含解析_第1页
2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题含解析_第2页
2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题含解析_第3页
2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题含解析_第4页
2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省荆州市荆州中学数学高一第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,函数在区间上是增函数,则()A. B.C. D.2.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.3.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.4.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.725.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.6.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.37.直线的倾斜角为()A. B. C. D.8.已知向量满足.为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.9.在中,已知三个内角为,,满足,则().A. B.C. D.10.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,点在边上,若,的面积为,则___________12.给出下列语句:①若为正实数,,则;②若为正实数,,则;③若,则;④当时,的最小值为,其中结论正确的是___________.13.已知一个铁球的体积为,则该铁球的表面积为________.14.不等式的解集为_________.15.若,则的取值范围是________.16.已知,为第二象限角,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.18.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.19.已知等比数列的各项为正数,为其前项的和,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公差为的等差数列,求数列的通项公式及其前项的和.20.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.21.在中,内角的对边分别为,已知.(1)证明:;(2)若,求边上的高.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【题目详解】因为,函数在区间上是增函数,所以.故选C.【题目点拨】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.2、B【解题分析】

利用古典概型概率公式求解即可.【题目详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【题目点拨】本题主要考查了利用古典概型概率公式计算概率,属于基础题.3、C【解题分析】

由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【题目详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【题目点拨】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.4、C【解题分析】

还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【题目详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【题目点拨】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.5、D【解题分析】

对分两种情况讨论分析得解.【题目详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【题目点拨】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.6、A【解题分析】

由点到直线距离公式计算.【题目详解】.故选:A.【题目点拨】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.7、C【解题分析】

求出直线的斜率,然后求解直线的倾斜角.【题目详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【题目点拨】本题考查直线的斜率与倾斜角的求法,属于基础题.8、A【解题分析】

不妨设,由得出点的坐标,根据题意得出曲线表示一个以为圆心,为半径的圆,区域表示以为圆心,内径为,外径为的圆环,再由是两段分离的曲线,结合圆与圆的位置关系得出的取值.【题目详解】不妨设则,所以,则曲线表示一个以为圆心,为半径的圆因为区域,所以区域表示以为圆心,内径为,外径为的圆环由于是两段分离的曲线,则该两段曲线分别为上图中的要使得是分离的曲线,则所在的圆与圆相交于不同的两点所以,即故选:A【题目点拨】本题主要考查了集合的应用以及由圆与圆的位置关系确定参数的范围,属于中档题.9、C【解题分析】

利用正弦定理、余弦定理即可得出.【题目详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【题目点拨】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.10、D【解题分析】

因为,所以由于与平行,得,解得.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【题目详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【题目点拨】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.12、①③.【解题分析】

利用作差法可判断出①正确;通过反例可排除②;根据不等式的性质可知③正确;根据的范围可求得的范围,根据对号函数图象可知④错误.【题目详解】①,为正实数,,即,可知①正确;②若,,,则,可知②错误;③若,可知,则,即,可知③正确;④当时,,由对号函数图象可知:,可知④错误.本题正确结果:①③【题目点拨】本题考查不等式性质的应用、作差法比较大小问题、利用对号函数求解最值的问题,属于常规题型.13、.【解题分析】

通过球的体积求出球的半径,然后求出球的表面积.【题目详解】球的体积为球的半径球的表面积为:故答案为:【题目点拨】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.14、【解题分析】

利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【题目详解】同解于解得或故答案为:【题目点拨】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.15、【解题分析】

利用反函数的运算法则,定义及其性质,求解即可.【题目详解】由,得所以,又因为,所以.故答案为:【题目点拨】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.16、【解题分析】

先求解,再求解,再利用降幂公式求解即可.【题目详解】由,又为第二象限角,故,且.又.故答案为:【题目点拨】本题主要考查了降幂公式的用法等,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在(3)1【解题分析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分18、(1)(2)(3)【解题分析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.19、(Ⅰ)(Ⅱ),【解题分析】

(Ⅰ)设正项等比数列的公比为且,由已知列式求得首项与公比,则数列的通项公式可求;(Ⅱ)由已知求得,再由数列的分组求和即可.【题目详解】(Ⅰ)由题意知,等比数列的公比,且,所以,解得,或(舍去),则所求数列的通项公式为.(Ⅱ)由题意得,故【题目点拨】本题主要考查等差数列与等比数列的通项公式及前项和公式的应用,同时考查了待定系数法求数列的通项公式和分组求和法求数列的和.20、(1);(2)证明见解析;(3).【解题分析】

(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【题目详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【题目点拨】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.21、(1)见解析(2)【解题分析】分析:(1)由,结合正弦定理可得,即;(2)由,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论