泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题含解析2_第1页
泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题含解析2_第2页
泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题含解析2_第3页
泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题含解析2_第4页
泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题含解析2_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰州市重点中学2024届数学高一第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与圆相切,则()A. B. C. D.或2.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.103.若,则下列不等式中不正确的是().A. B. C. D.4.设,则有()A. B. C. D.5.如图,在中,已知D是边延长线上一点,若,点E为线段的中点,,则()A. B. C. D.6.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.547.如图是一个正方体的平面展开图,在这个正方体中①②③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④8.在中,角A,B,C的对边分别为a,b,c.若,则一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形9.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定10.在正项等比数列中,,数列的前项之和为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与圆交于两点,若为等边三角形,则______.12.已知函数的图象如图所示,则不等式的解集为______.13.已知变量,满足,则的最小值为________.14.函数y=sin2x+2sin2x的最小正周期T为_______.15.已知x,y满足,则的最大值为________.16.已知,,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若对任意的,不等式上恒成立,求实数的取值范围;(2)解关于的不等式.18.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,

记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.19.已知数列的前项和为,满足且,数列的前项为,满足(Ⅰ)设,求证:数列为等比数列;(Ⅱ)求的通项公式;(Ⅲ)若对任意的恒成立,求实数的最大值.20.四棱锥中,底面是边长为2的菱形,,是等边三角形,为的中点,.(Ⅰ)求证:;(Ⅱ)若,能否在棱上找到一点,使平面平面?若存在,求的长.21.求下列方程和不等式的解集(1)(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

本题首先可根据圆的方程确定圆心以及半径,然后根据直线与圆相切即可列出算式并通过计算得出结果。【题目详解】由题意可知,圆方程为,所以圆心坐标为,圆的半径,因为直线与圆相切,所以圆心到直线距离等于半径,即解得或,故选D。【题目点拨】本题考查根据直线与圆相切求参数,考查根据圆的方程确定圆心与半径,若直线与圆相切,则圆心到直线距离等于半径,考查推理能力,是简单题。2、A【解题分析】

利用勾股定理计算出球的半径.【题目详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【题目点拨】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.3、D【解题分析】

先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【题目详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【题目点拨】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.4、A【解题分析】

根据题意,利用辅助角公式得,对于,根据同角三角函数的基本关系和二倍角公式对进行处理,即可得到;对于,利用二倍角公式对变形处理可以得到,再根据正弦函数的单调性即可比较大小.【题目详解】由题意得因为正弦函数在上为增函数,所以,选A.【题目点拨】本题是一道关于三角函数值大小比较的题目,解答本题的关键是掌握三角函数公式;二倍角公式、辅助角公式、同角三角函数的基本关系等.属于中等题.5、B【解题分析】

由,,,,代入化简即可得出.【题目详解】,带人可得,可得,故选B.【题目点拨】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.6、C【解题分析】

利用等差数列的性质和求和公式,即可求得的值,得到答案.【题目详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【题目点拨】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.7、D【解题分析】

作出直观图,根据正方体的结构特征进行判断.【题目详解】作出正方体得到直观图如图所示:由直观图可知,与为互相垂直的异面直线,故①不正确;,故②正确;与为异面直线,故③正确;由正方体性质可知平面,故,故④正确.故选:D【题目点拨】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.8、D【解题分析】

根据正弦定理得到,计算得到答案.【题目详解】,则,即.故或,即.故选:.【题目点拨】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.9、A【解题分析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【题目详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【题目点拨】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.10、B【解题分析】

根据等比数列的性质,即可解出答案。【题目详解】故选B【题目点拨】本题考查等比数列的性质,同底对数的运算,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【题目详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【题目点拨】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.12、【解题分析】

根据函数图象以及不等式的等价关系即可.【题目详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【题目点拨】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.13、0【解题分析】

画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【题目详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【题目点拨】本题主要考查了简单的线性规划,属于中档题.14、【解题分析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.15、6【解题分析】

作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【题目详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、-3【解题分析】由可知,解得,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】

(1)参变分离后可得在上恒成立,利用基本不等式可求的最小值,从而得到参数的取值范围.(2)原不等式可化为,就对应方程的两根的大小关系分类讨论可得不等式的解集.【题目详解】(1)对任意的,恒成立即恒成立.因为当时,(当且仅当时等号成立),所以即.(2)不等式,即,①当即时,;②当即时,;③当即时,.综上:当时,不等式解集为;当时,不等式解集为;当时,不等式解集为.【题目点拨】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式大于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.一元二次不等式的恒成立问题,参变分离后可以转化为函数的最值进行讨论,后者可利用基本不等式来求.18、(1)400;(2);(3)【解题分析】

(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【题目详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【题目点拨】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.19、(Ⅰ)见解析(Ⅱ)(Ⅲ)【解题分析】

(Ⅰ)对递推公式变形可得,根据等比数列的定义,即可得证;(Ⅱ)化简可得,然后再利用裂项相消法求和,即可得到结果;(Ⅲ)先求出,然后再利用分组求和求出,然后再利用分离常数法,可得,最后对进行分类讨论,即可求出结果.【题目详解】解:(Ⅰ)由得,变形为:,,且∴数列是以首项为2,公比为的等比数列(Ⅱ)由;(Ⅲ)由(Ⅰ)知数列是以首项为2,公比为的等比数列∴,于是∴=,由得从而,∴当n为偶数时,恒成立,而,∴1当n为奇数时,恒成立,而,∴综上所述,,即的最大值为【题目点拨】本题考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消法求和和分组法求和,考查化简运算能力,属于中档题.20、(Ⅰ)见解析;(Ⅱ).【解题分析】

(Ⅰ)连接,根据三角形性质可得,由底面菱形的线段角度关系可证明,即证明平面,从而证明.(Ⅱ)易证平面平面,连接交于点,过作交于,即可证明平面,在三角形【题目详解】(Ⅰ)证明:连接,是等边三角形,为的中点,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面连接交于点,过作交于,如下图所示:所以平面,又平面所以平面平面因为,所以,即在等边三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论