2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题含解析_第1页
2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题含解析_第2页
2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题含解析_第3页
2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题含解析_第4页
2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省醴陵市高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.2.已知函数,则函数的最小正周期为()A. B. C. D.3.命题“”的否定是()A., B.,C., D.,4.函数的图像的一条对称轴是()A. B. C. D.5.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形6.已知等差数列中,,.若公差为某一自然数,则n的所有可能取值为()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,707.已知,且,则()A. B.7 C. D.8.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍9.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.10.若直线上存在点满足则实数的最大值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,若直线与线段有公共点,则实数的取值范围是____________.12.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________13.函数在上是减函数,则的取值范围是________.14.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设的三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜公式”为.若,,则用“三斜公式”求得的面积为______.15.已知向量,的夹角为,若,,则________.16.在中,若,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.18.某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,,.求图中的值;根据频率分布直方图,估计这名学生的平均分;若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.分数段:51:21:119.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x,y的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差,其中为的平均数)20.化简.21.已知.(1)求不等式的解集;(2)若关于的不等式能成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【题目详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【题目点拨】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.2、D【解题分析】

根据二倍角公式先化简,再根据即可。【题目详解】由题意得,所以周期为.所以选择D【题目点拨】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。3、B【解题分析】

含有一个量词的命题的否定,注意“改量词,否结论”.【题目详解】改为,改成,则有:.故选:B.【题目点拨】本题考查含一个量词的命题的否定,难度较易.4、C【解题分析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.5、D【解题分析】

由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【题目详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【题目点拨】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.6、B【解题分析】试题分析:由等差数列的通项公式得,公差,所以,可能为,的所有可能取值为选.考点:1.等差数列及其通项公式;2.数的整除性.7、D【解题分析】

由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【题目详解】,,,,.故选:D.【题目点拨】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.8、C【解题分析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【题目点拨】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.9、A【解题分析】

把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【题目详解】设,,,,,,,,,,的最大值是.故选A.【题目点拨】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.10、B【解题分析】

首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【题目详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【题目点拨】本题主要考查线性规划及其应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据直线方程可确定直线过定点;求出有公共点的临界状态时的斜率,即和;根据位置关系可确定的范围.【题目详解】直线可整理为:直线经过定点,又直线的斜率为的取值范围为:本题正确结果:【题目点拨】本题考查根据直线与线段的交点个数求解参数范围的问题,关键是能够明确直线经过的定点,从而确定临界状态时的斜率.12、或0【解题分析】

运用向量的加减运算和特殊角的三角函数值,可得所求和.【题目详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【题目点拨】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.13、【解题分析】

根据二次函数的图象与性质,即可求得实数的取值范围,得到答案.【题目详解】由题意,函数表示开口向下,且对称轴方程为的抛物线,当函数在上是减函数时,则满足,解得,所以实数的取值范围.故答案为:.【题目点拨】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】

先由,根据余弦定理,求出,再由,结合余弦定理,求出,再由题意即可得出结果.【题目详解】因为,所以,因此;又,由余弦定理可得,所以,因此.故答案为【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.15、【解题分析】

由,展开后进行计算,得到的值,从而得到答案.【题目详解】因为向量,的夹角为,若,,所以,所以.故答案为:.【题目点拨】本题考查求向量的模长,向量的数量积运算,属于简单题.16、2;【解题分析】

利用余弦定理可构造关于的方程,解方程求得结果.【题目详解】由余弦定理得:解得:或(舍)本题正确结果:【题目点拨】本题考查利用余弦定理解三角形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)或【解题分析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【题目详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【题目点拨】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.18、(1)(2)平均数为(3)人【解题分析】

(1)根据面积之和为1列等式解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,(3)先计算出各分数段上的成绩,再根据比值计算出相应分数段上的英语成绩人数相加即可.【题目详解】解:由,解得.频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.由频率分布直方图可求出这名学生的数学成绩在,,的分别有人,人,人,按照表中给的比例,则英语成绩在,,的分别有人,人,人,所以英语成绩在的有人.【题目点拨】本题考查了频率分布直方图,属中档题.19、(1),;(2)乙班的整体水平较高【解题分析】

(1)由茎叶图数据以及平均数,中位数的定义求解即可;(2)分别计算出甲乙两班的方差,得出,所以乙班的整体水平较高.【题目详解】(1)由茎叶图知甲班成绩数据依次为9,12,,20,26所以中位数为,得;乙班成绩数据的平均数,得.(2)乙班整体水平较高.理由:由题意及(1)得因为,所以乙班的整体水平较高.【题目点拨】本题主要考查了利用茎叶图计算平均数,中位数以及方差的应用,属于中档题.20、【解题分析】

利用诱导公式进行化简,即可得到答案.【题目详解】原式.【题目点拨】本题考查诱导公式的应用,考查运算求解能力,求解时注意奇变偶不变,符号看象限这一口诀的应用.21、(1)(1)或.【解题分析】

(1)运用绝对值的意义,去绝对值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等价为|x+l|﹣|x﹣m|的最大值,由绝对值不等式的性质,以及绝对值不等式的解法,可得所求范围.【题目详解】解:(1)由题意可得|x﹣1|+|1x+3|>4,当x≥1时,x﹣1+1x+3>4,解得x≥1;当x<1时,1﹣x+1x+3>4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论