版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省丰城四中2024届数学高一下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或2.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.3.已知集合,,则()A. B. C. D.4.已知数列满足,且是函数的两个零点,则等于()A.24 B.32 C.48 D.645.平行四边形中,M为的中点,若.则=()A. B.2 C. D.6.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.7.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.88.已知不等式的解集为,则不等式的解集为()A. B.C. D.9.命题“”的否定是()A., B.,C., D.,10.若角的终边过点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101312.已知直线与圆相交于两点,则______.13.已知数列的前n项和,则________.14.在,若,,,则__________________.15.已知,,且,则的最小值为________.16.当时,的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和.18.涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:分组(岁)频数合计(1)求频数分布表中、的值,并补全频率分布直方图;(2)在抽取的这名市民中,从年龄在、内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.19.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.20.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.21.解方程:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】,,则或,选C.2、B【解题分析】
设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【题目详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【题目点拨】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.3、D【解题分析】依题意,故.4、D【解题分析】试题分析:依题意可知,,,,所以.即,故,,,.,所以,又可知.,故.考点:函数的零点、数列的递推公式5、A【解题分析】
先求出,再根据得到解方程组即得解.【题目详解】由题意得,又因为,所以,由题意得,所以解得所以,故选A.【题目点拨】本题主要考查平面向量的运算法则,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解题分析】
由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【题目详解】,因为对任意的恒成立,则,,解得:,故选B.【题目点拨】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.7、B【解题分析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【题目点拨】8、A【解题分析】
根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得;利用一元二次不等式的解法可求得结果.【题目详解】的解集为和是方程的两根,且,解得:解得:,即不等式的解集为故选:【题目点拨】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.9、B【解题分析】
含有一个量词的命题的否定,注意“改量词,否结论”.【题目详解】改为,改成,则有:.故选:B.【题目点拨】本题考查含一个量词的命题的否定,难度较易.10、D【解题分析】
解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【题目详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【题目点拨】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、21.2【解题分析】
计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【题目详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【题目点拨】本题主要考查回归方程的相关计算,难度很小.12、【解题分析】
首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可.【题目详解】圆,,圆心,半径.圆心到直线的距离..故答案为:【题目点拨】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题.13、【解题分析】
先利用求出,在利用裂项求和即可.【题目详解】解:当时,,当时,,综上,,,,故答案为:.【题目点拨】本题考查和的关系求通项公式,以及裂项求和,是基础题.14、【解题分析】
由,故用二倍角公式算出,再用余弦定理算得即可.【题目详解】,又,,又,代入得,所以.故答案为【题目点拨】本题主要考查二倍角公式与余弦定理,属于基础题型.15、【解题分析】
由,可得,然后利用基本不等式可求出最小值.【题目详解】因为,所以,当且仅当,时取等号.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.16、-3.【解题分析】
将函数的表达式改写为:利用均值不等式得到答案.【题目详解】当时,故答案为-3【题目点拨】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)按等比数列的概念直接求解即可;(2)先求出的表达式,再利用裂项相消法即可求得数列的前项和.【题目详解】(1)由等比数列通项公式得:(2)由(1)可得:【题目点拨】本题主要考查数列的通项公式问题及利用裂项相消法求和的问题,属常规考题.18、(1),频率分布直方图见解析;(2).【解题分析】
(1)根据分布直方图计算出第二个矩形的面积,乘以可得出的值,再由频数之和为得出的值,利用频数除以样本容量得出第四个矩形的面积,并计算出第四个矩形的高,于此可补全频率分布直方图;(2)先计算出人中年龄在、内的市民人数分别为、,将年龄在的位市民记为,年龄在的位市民记为、、、,记事件恰有人的年龄在内,列举出所有的基本事件,并确定事件所包含的基本事件数,利用古典概型的概率公式可计算出事件的概率.【题目详解】(1)由频数分布表和频率分布直方图可知,解得.频率分布直方图中年龄在内的人数为人,对应的为,所以补全的频率分布直方图如下图所示:(2)由频数分布表知,在抽取的人中,年龄在内的市民的人数为,记为,年龄在内的市民的人数为,分别记为、、、.从这人中任取人的所有基本事件为:、、、、、、、、、,共个基本事件.记“恰有人的年龄在内”为事件,则所包含的基本事件有个:、、、,所以这人中恰有人的年龄在内的概率为.【题目点拨】本题考查频率分布直方图和频率分布表的应用,同时也考查了古典概型概率公式计算概率,在列举基本事件时要遵循不重不漏的基本原则,常用的是列举法,也可以利用树状图来辅助理解,考查运算求解能力,属于中等题.19、(1)证明见解析;(2).【解题分析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【题目详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【题目点拨】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.20、(1);(2).【解题分析】
(1)利用正弦定理边角互化思想以及两角和的正弦公式可求出的值,结合角的范围可得出角的大小;(2)利用余弦定理得出,由三角形的面积公式,代入数据得出,将该等式代入等式可解出边的长.【题目详解】(1)由及正弦定理,可得,即,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师版《平行四边形的面积》
- 王守仁知识讲义学习
- 部编人教版八年级历史上册课件:第6课戊戌变法学习
- 幼儿园保教工作管理课件
- 七年X线考题课件
- 骨骼、肌肉的保健课件
- 2025年元旦喜庆红灯笼模板
- 山东省泰安市第一中学2024-2025学年高二上学期11月月考生物学试题(含答案)
- 首师大版三年级科学上册教案
- 湖南省娄底市新化县2024-2025学年八年级上学期12月月考物理试题(含答案)
- 特种设备使用单位安全管理准则
- FusionCharts使用手册
- 水库清淤施工设计方案
- 麦当劳英文介绍-课件(PPT-精)
- 关于开发建设项目水土保持咨询服务费用计列的指导意见(保监[2005]22号)
- 简易呼吸气囊的使用
- SMT控制计划(中英文)
- 《道路勘测设计》试卷及答案Word版
- GB_T 40851-2021 食用调和油(高清-现行)
- XYQ12A中文说明书
- 各种施耐德接触器配套热继电器选型表
评论
0/150
提交评论