




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省武冈二中2024届数学高一下期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.2.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.3.设等差数列,则等于()A.120 B.60 C.54 D.1084.已知圆C1:x2+y2+4y+3=0,圆C2:x2+A.210-3 B.210+35.记复数的虚部为,已知满足,则为()A. B. C.2 D.6.在等差数列中,若,则()A.45 B.75 C.180 D.3207.若且,则的最小值是()A.6 B.12 C.24 D.168.已知点,则P在平面直角坐标系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限9.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、1610.在中,角的对边分别为,若,则形状是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,则________12.已知等差数列的前三项为,则此数列的通项公式为______13.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.14.等差数列前项和为,已知,,则_____.15.某几何体的三视图如图所示,则该几何体的体积为__________.16.直线与的交点坐标为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.18.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.19.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.20.已知函数的图象过点,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求实数的取值范围.21.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【题目详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【题目点拨】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.2、A【解题分析】
求出函数的周期,函数的奇偶性,判断求解即可.【题目详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.3、C【解题分析】
题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。【题目详解】,选C.【题目点拨】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。也可将等式全部化为的表达式,整体代换计算出4、A【解题分析】
求出圆C1,C2的圆心坐标和半径,作出圆C1关于直线l的对称圆C1',连结C1'C2,则C1'C2与直线l的交点即为P点,此时M点为P【题目详解】由圆C1:x可知圆C1圆心为0,-2圆C2圆心为3,-1圆C1关于直线l:y=x+1的对称圆为圆C连结C1'C2,交l于P,则此时M点为PC1'与圆C1'的交点关于直线l对称的点,N最小值为C1而C1∴PM+PN【题目点拨】本题考查了圆方程的综合应用,考查了利用对称关系求曲线上两点间的最小距离,体现了数形结合的解题思想方法,是中档题.解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.5、A【解题分析】
根据复数除法运算求得,从而可得虚部.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.6、C【解题分析】试题分析:因为数列为等差数列,且,所以,,从而,所以,而,所以,故选C.考点:等差数列的性质.7、D【解题分析】试题分析:,当且仅当时等号成立,所以最小值为16考点:均值不等式求最值8、B【解题分析】
利用特殊角的三角函数值的符号得到点的坐标,直接判断点所在象限即可.【题目详解】,.在平面直角坐标系中位于第二象限.故选B.【题目点拨】本题考查了三角函数值的符号,考查了三角函数的诱导公式的应用,是基础题.9、B【解题分析】试题分析:高级职称应抽取;中级职称应抽取;一般职员应抽取.考点:分层抽样点评:本题主要考查分层抽样的定义与步骤.分层抽样:当总体是由差异明显的几个部分组成的,可将总体按差异分成几个部分(层),再按各部分在总体中所占比例进行抽样.10、D【解题分析】
由,利用正弦定理化简可得sin2A=sin2B,由此可得结论.【题目详解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状是等腰三角形或直角三角形故选D.【题目点拨】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】
由向量的模长公式,计算得到答案.【题目详解】因为向量,所以,所以答案为.【题目点拨】本题考查向量的模长公式,属于简单题.12、【解题分析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.13、.【解题分析】
分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【题目详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【题目点拨】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.14、1【解题分析】
首先根据、即可求出和,从而求出。【题目详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【题目点拨】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。15、【解题分析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.16、【解题分析】
直接联立方程得到答案.【题目详解】联立方程解得即两直线的交点坐标为.故答案为【题目点拨】本题考查了两直线的交点,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解题分析】
(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【题目详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【题目点拨】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.18、(1);(2)方案一概率为,方案二概率为.【解题分析】
(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【题目详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【题目点拨】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(1)(2)最小正周期,的单调递增区间为:.【解题分析】
(1)计算平面向量的数量积得出函数的解析式,求出时的值;(2)根据的解析式,求出它的最小正周期T及单调递增区间.【题目详解】函数时,,解得又;(2)函数它的最小正周期:令故:的单调递增区间为:【题目点拨】本题考查了正弦型函数的性质,考查了学生综合分析,转化与划归,数形结合的能力,属于中档题.20、(1);(2);(3)【解题分析】
(1)根据,,两点可确定,的值;(2)由(1)知,,求出,的值,然后根据,求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【题目详解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,当时,,实数的取值范围为.【题目点拨】本题主要考查了三角函数的图象与性质,三角函数值的求法,以及在闭区间上的三角函数的值域问题的求法,意在考查学生整体思想以及转化与化归思想的应用能力.21、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解题分析】
(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【题目详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工贸企业有限空间课件
- 商业汇票承兑协议
- 销售代理协议与业绩考核
- 疟疾防治教学课件
- 广西24年三模数学试卷
- 河南专升本往年数学试卷
- 广西玉林段考的数学试卷
- 汉中市龙岗中学数学试卷
- 淮安初二数学试卷
- 广东职校高一数学试卷
- 公路应急值守管理办法
- 财务离职保密协议及竞业限制合同范本
- 网络安全考试题目及答案
- 2025年陕西行政执法资格考试备考模拟题及答案(题型)
- (高清版)DG∕TJ 08-7-2021 建筑工程交通设计及停车库(场)设置标准
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 2025年世界防治结核病日知识竞赛考试题库300题(含答案)
- 2024年01月黑龙江齐齐哈尔市克山县公安局招录辅警笔试近6年高频考题难、易错点荟萃答案带详解附后
- S114型碾轮式混砂机的设计(混凝土)(机械CAD图纸)
- 三国志11武将大全
- 狄耐克602产品使用手册
评论
0/150
提交评论