版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题45构造平行四边形问题【规律总结】平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用。2.由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分.3.除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.【典例分析】例1.(2019·上海同济大学实验学校八年级月考)如图,中,点是的中点,,,则长().A.7 B.8 C.9 D.10【答案】C【分析】求BE的长,可转化为,EF已知,只需求出BF的长即可,延长AD,使,连接BG,CG,判定四边形ABGC为平行四边形,在DG上取一点H,使,判断四边形BECI为平行四边形,求证即可求解.【详解】延长AD,使,连接BG,CG,∵,,∴四边形ABGC为平行四边形,∴,在DG上取一点H,使,连接并延长交于,
∵,∴四边形BECI为平行四边形,∵,∴,∵,∴,∴,∴,∴,故选:C.【点睛】本题主要考查的是平行四边形的性质即定理,以及两直线平行,内错角相等,学会运用辅助线作图以及熟练掌握平行四边形的性质即定理,以及两直线平行,内错角相等的定理是解答本题的关键.例2.(2020·浙江宁波市·八年级期中)如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积是_____.【答案】8【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×hCF的值即可.【详解】连接DE、EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×hCF,∵△ABC的面积是24,BC=3CF∴BC×hBC=×3CF×hCF=24,∴CF×hCF=16,∴阴影部分的面积是×16=8,故答案为:8.【点睛】此题考查平行四边形的判定及性质,同底等高三角形面积的关系,解题中注意阴影部分面积的求法,根据图形的特点选择正确的求法是解题的关键.例3.(2020·四川成都市·双流中学九年级期中)如图,点是正方形中延长线上一点,对角线相交于点,连接,分别交于点,过点作的垂线,垂足为点,交线段于.(1)若,求的大小.(2)求证:.(3)若正方形的边长为1,,求的长.【答案】(1)25°;(2)证明见详解;(3)【分析】(1)由正方形性质得到∠DBP的度数,利用外角性质得到∠GEB的度数,再由直角三角形两锐角互余,即可得到∠GBE的度数;(2)连接CE,证△ECF与△EPC,可得EC的平方与EF和EP的关系,再根据正方形性质得到EA=EC,即可得到结论;(3)利用三角函数值求出DM的长,再利用△ABG和△ABP相似求出AG长,证明四边形ACPD是平行四边形可得∠DPA与∠GAH相等,则它们的三角函数值相等,通过∠GAH的正切值即可得到HG的长;【详解】(1)∵四边形是正方形,是正方形的对角线,∴,∵中,∴,∵,∴;(2)如图所示,连接,∵四边形是正方形,∴关于对称,即,∴,∴,∵,∴,又∵,∴,∴,∴,∴;(3)∵正方形的边长为1,∴,又∵,∴,∴,∵,∴,∴,∴,即,∴,连接,∵,∴四边形为平行四边形,∴,过点作于,∴,,∴,∵,∴,∴,∴,即的长为.【点睛】本题考查正方形的性质,相似三角形的性质和判定、三角函数值、平行四边形的性质和判定等知识点,正确添加辅助线,确定相似三角形是解题的关键.【好题演练】一、单选题1.(2020·宁夏中考真题)如图,菱形的边长为13,对角线,点E、F分别是边、的中点,连接并延长与的延长线相交于点G,则()A.13 B.10 C.12 D.5【答案】B【分析】连接对角线BD,交AC于点O,求证四边形BDEG是平行四边形,EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【详解】连接BD,交AC于点O,由题意知:菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB=BC=CD=DA=13,EFBD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵ABCD,EFBD∴DEBG,BDEG在四边形BDEG中,∵DEBG,BDEG∴四边形BDEG是平行四边形∴BD=EG在△COD中,∵OC⊥OD,CD=13,CO=12∴OD=OB=5∴BD=EG=10故选B.【点睛】本题主要考查了菱形的性质,平行四边形的性质及勾股定理,熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.2.(2020·眉山市东坡区东坡中学八年级期中)在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为()s时,以A,F,C,E为顶点的四边形是平行四边形?()A.2 B.3 C.6 D.2或6【答案】D【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【详解】①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC-BF=6-2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6-2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF-BC=2t-6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t-6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故选D.【点睛】本题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.二、填空题3.(2019·上海浦东新区·八年级期末)如图,在梯形中,,对角线,且,则梯形的中位线的长为_________.【答案】5【解析】【详解】解:过C作CE∥BD交AB的延长线于E,
∵AB∥CD,CE∥BD,
∴四边形DBEC是平行四边形,
∴CE=BD,BE=CD
∵等腰梯形ABCD中,AC=BD∴CE=AC
∵AC⊥BD,CE∥BD,
∴CE⊥AC
∴△ACE是等腰直角三角形,
∵AC=,
∴AE=AC=10,∴AB+CD=AB+BE=10,
∴梯形的中位线=AE=5,
故答案为:5.【点睛】本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.三、解答题4.(2020·浙江温州市·实验中学八年级期中)如图1,在▱ABCD中,BD=6,∠ABC=45°,∠DBC=30°,动点E在边上,,动点F在射线BD上,BF=5x.(1)若点P是BC边上一点,在点E,F运动过程中,是否存在x的值,使得以P,D,E,F顶点的四边形是平行四边形?若存在,求出x的值;若不存在,请说明理由.(2)如图2,过点D作DG⊥BC交BC的延长线于点G.过点E作交DG的于点H连接FH,把△DHF沿FH翻折得到△D'HF,当D'F与△DBG的一边平行时,HG的长.(直接写出答案)【答案】(1)满足条件的x的值为或2;(2)满足条件的GH的值为或或.【分析】(1)分两种情形:如图1﹣1中,当点F在线段BD上时,即0≤x≤1.2时,四边形PEDF是平行四边形,如图1﹣2中,当点F在BD的延长线上时,即x>1.2时,四边形DPEF是平行四边形,分别构建方程求解即可.(2)分三种情形:如图2﹣1中,当D′F∥DG时,如图2﹣2中,当FD′∥BC时,设HD′交BD于R.如图2﹣3中,当FD′∥DG时,四边形FDHD′是菱形,分别构建方程求解即可.【详解】解:(1)如图1﹣1中,当点F在线段BD上时,即0≤x≤1.2时,四边形PEDF是平行四边形,过点E作EJ⊥CG于J.由题意,DF=PE=6﹣5x,CE=x,∵AB∥CD,∴∠ECJ=∠ABC=45°,∴EJ=CJ=x,∵PE∥BD,∴∠EPJ=∠DBC=30°,∴PE=2EJ,∴6﹣5x=2x,∴x=.如图1﹣2中,当点F在BD的延长线上时,即x>1.2时,四边形DPEF是平行四边形,同法可得,DF=PE=2EJ,∴5x﹣6=2x,∴x=2,综上所述,满足条件的x的值为或2.(2)如图2﹣1中,当D′F∥DG时,过点E作ET⊥BG于T.∵∠ECT=45°,EC=x,∠ETC=90°,∴ET=CT=x,∵EH⊥DG,DG⊥BG,∴∠ETG=∠EHG=∠HGT=90°,∴四边形ETGH是矩形,∴HG=ET=x,由题意,DF=D′F,D′F∥DH,∠BDH=60°,∴∠D′HG=∠FD′H=60°,∴FD//D′H∴四边形DFD′H是菱形,∴DF=DH=3﹣x,∴6﹣5x=3﹣x,∴x=.如图2﹣2中,当FD′∥BC时,设HD′交BD于R.∵FD′∥BC,∴∠D′FR=∠DBC=30°,∵∠D′=∠BDG=60°,∴∠DRH=90°,∴DR=DH=(3﹣x).RH=DR=(3﹣x),∵RD′=D′H﹣RH=3﹣x﹣(3﹣x),∴FR=D′R=[3﹣x﹣(3﹣x)],∵FR+DF=DR,∴[3﹣x﹣(3﹣x)]+6﹣5x=(3﹣x),∴x=.如图2﹣3中,当FD′∥DG时,∠BDG=60°,∴∠DFD′=60°,∠HDF=120°,由折叠可知,DF=D′F,∠FD′H=120°,∴DF//HD′∴四边形FDHD′是菱形,∴DH=DF,∴3﹣x=5x﹣6,∴x=,综上所述,满足条件的GH的值为或或.【点睛】本题考查平行四边形性质、矩形的性质和判定、菱形的性质和判定、解直角三角形、翻折变化等知识点,解题的关键是分类讨论,学会利用参数构建方程解决问题,属中考压轴题5.(2020·哈尔滨市第十七中学校八年级月考)已知,菱形中,,、分别是边和上的点,且.(1)求证:(2)如图2,在延长线上,且,求证:(3)如图3,在(2)的条件下,,,是的中点,求的长.【答案】(1)证明见解析;(2)证明见解析;(3)7【分析】(1)连接AC,如图1,根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用ASA可证明△AEB≌△AFC,即可解答;(2)过点F作FH∥AB,交CB的延长线于点H,利用平行线的性质求得△FHC是等边三角形,得到CF=CH=FH,然后利用AAS定理求得△HBF≌△CEF,从而问题得解;(3)过点B作BK∥FC,交HF于点K,根据两组对边分别平行求得四边形KBAF是平行四边形,从而求得,FK=16,过点A作AM⊥FH,然后利用含30°的直角三角形的性质求得MF=,,从而求得KM=13,然后利用勾股定理求解即可.【详解】解:(1)连接AC,如图1,∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACP=60°,∵∠EAP=60°,即∠EAC+∠CAP=60°,∴∠BAE=∠CAP,在△AEB和△APC中,,∴△AEB≌△APC,∴BE=CF∴;(2)过点F作FH∥AB,交CB的延长线于点H∵FH∥AB∴∠H=∠CGH=60°∴△FHC是等边三角形∴CF=CH=FH又∵△ABC是等边三角形∴CA=CB∴AF=BH又∵FB=FE∴∠FEB=∠FEB,即∠FBH=∠FEC在△HBF和△CEF中∴△HBF≌△CEF∴BH=EC∴AF=EC(3)过点B作BK∥FC,交HF于点K,∵BK∥FC,FH∥AB∴四边形KBAF是平行四边形∴KB=AF=EC=6,∴FK=AB=BC=BE+EC=BE+AF=16过点A作AM⊥FH由(2)可知,∠CFH=60°∴在Rt△AMF中,∠MAF=30°∴MF=,∴KM=16-3=13在Rt△AKM中,∴AO=7.【点睛】本题考查全等三角形的判定与性质,等边三角形的判定与性质,及平行四边形的判定和性质,题目有一定的综合性,正确添加辅助线解题是关键的突破点.6.(2020·江西九年级一模)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线交反比例函数图象于点B,(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.【答案】(1)反比例函数解析式为:y=;直线AC的解析式为:y=﹣x+8;(2)3;(3)符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将A,C坐标代入直线解析式解答即可;(2)把x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标,进而利用三角形面积公式解答即可;
(3)使得以A、B、C、D为顶点的四边形为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生兼职劳动合同书2
- 联机手环测量仪器项目运营指导方案
- 电动锯商业机会挖掘与战略布局策略研究报告
- 冲床金属加工用产品供应链分析
- 电动指甲刀商业机会挖掘与战略布局策略研究报告
- 眉刷商业机会挖掘与战略布局策略研究报告
- 自动电话交换机商业机会挖掘与战略布局策略研究报告
- 粉饼盒用粉芯项目运营指导方案
- 空手道用护腿板项目运营指导方案
- 外科手术机器人出租行业相关项目经营管理报告
- 哈工大研究生课程-高等结构动力学-第四章课件
- 仁义礼智信五常心态课件
- 遗传算法讲稿
- 高质量的师幼互动(提交版)课件
- 导游业务说课汇报课件
- 国企工期标准化手册!各业态建筑工期要求详解
- 卿平海-以校为本的学校发展规划课件
- DB31T 405-2021 集中空调通风系统卫生管理规范
- 示儿优秀课件
- (质量科)废弃物处理记录
- 2022四年级数学上册1大数的认识第13课时整理和复习教学设计新人教版
评论
0/150
提交评论