版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
怒江市重点中学2024届数学高一下期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则()A. B.C. D.2.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.3.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,4.在中,内角,,所对的边分别为,,.若的面积为,则角=()A. B.C. D.5.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.46.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定7.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.8.直线的斜率是()A. B.13 C.0 D.9.sin300°的值为A. B. C. D.10.已知圆O1:x2+y2=1与圆O2:(x﹣3)2+(x+4)2=16,则圆O1与圆O2的位置关系为()A.外切 B.内切 C.相交 D.相离二、填空题:本大题共6小题,每小题5分,共30分。11.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.12.已知,,,的等比中项是1,且,,则的最小值是______.13.用秦九韶算法求多项式当时的值的过程中:,__.14.下列命题:①函数的最小正周期是;②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;④函数在上是增函数.其中,正确的命题是________(填正确命题的序号).15.若点为圆的弦的中点,则弦所在的直线的方程为___________.16.已知角的终边经过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.18.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.19.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.20.在平面直角坐标系中,已知向量,.(1)求证:且;(2)设向量,,且,求实数的值.21.已知函数=的定义域为=的定义域为(其中为常数).(1)若,求及;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
求出中不等式的解集确定出,找出与的交集即可.【题目详解】解:由中不等式变形得:,解得:,即,,,故选:.【题目点拨】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2、D【解题分析】
分别求出大圆面积和深色部分面积即可得解.【题目详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【题目点拨】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.3、A【解题分析】
根据分层抽样的定义建立比例关系即可得到结论。【题目详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【题目点拨】本题主要考查分层抽样的应用。4、C【解题分析】
由三角形面积公式,结合所给条件式及余弦定理,即可求得角A.【题目详解】中,内角,,所对的边分别为,,则由余弦定理可知而由题意可知,代入可得所以化简可得因为所以故选:C【题目点拨】本题考查了三角形面积公式的应用,余弦定理边角转化的应用,属于基础题.5、A【解题分析】
根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【题目详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【题目点拨】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.6、A【解题分析】
由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【题目详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【题目点拨】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.7、B【解题分析】
根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【题目详解】因为数列是等差数列,所以,故,选B.【题目点拨】本题主要考查了等差数列前n项和的性质,属于中档题.8、A【解题分析】
由题得即得直线的斜率得解.【题目详解】由题得,所以直线的斜率为.故选:A【题目点拨】本题主要考查直线的斜率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解题分析】
利用诱导公式化简,再求出值为.【题目详解】因为,故选B.【题目点拨】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.10、A【解题分析】
先求出两个圆的圆心和半径,再根据它们的圆心距等于半径之和,可得两圆相外切.【题目详解】圆的圆心为,半径等于1,圆的圆心为,半径等于4,它们的圆心距等于,等于半径之和,两个圆相外切.故选A.【题目点拨】判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.12、4【解题分析】
,的等比中项是1,再用均值不等式得到答案.【题目详解】,的等比中项是1当时等号成立.故答案为4【题目点拨】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.13、1【解题分析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【题目详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【题目点拨】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.14、①②④【解题分析】
由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.【题目详解】函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;在直角坐标系xOy中,点P(a,b),将向量绕点O逆时针旋转90°得到向量,设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.故答案为①②④.【题目点拨】本题考查余弦函数的图象和性质,主要是周期性和单调性,考查数形结合思想和化简运算能力,属于基础题.15、;【解题分析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【题目详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【题目点拨】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).16、【解题分析】由题意,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【题目详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【题目点拨】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.18、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【题目详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【题目点拨】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19、(1)见解析(2)9或35或133【解题分析】
(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【题目详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【题目点拨】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。20、(1)证明见解析(2)【解题分析】
(1)根据向量的坐标求出向量模的方法以及向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论