版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省辅仁高级中学高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=x⋅lnA. B.C. D.2.等比数列的各项均为正数,且,则()A.3 B.6 C.9 D.813.已知,则使得都成立的取值范围是().A. B. C. D.4.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.5.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.6.已知函数,此函数的图象如图所示,则点的坐标是()A. B. C. D.7.直线与圆相交于点,则()A. B. C. D.8.设数列的前项和为,且,则数列的前10项的和是()A.290 B. C. D.9.在中,角的对边分别是,若,则角的大小为()A.或 B.或 C. D.10.已知,若,则的值是().A.-1 B.1 C.2 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前n项和为,若,则的值为______________.12.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.13.若过点作圆的切线,则直线的方程为_______________.14.设,则等于________.15.__________.16.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥的底面为直角梯形,,,底面,且,是的中点.(1)求证:直线平面;(2)若,求二面角的正弦值.18.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.19.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求方程的解构成的集合.20.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.21.已知函数,且,.(1)求,的值及的定义域;(2)若存在,使得成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
判断函数的奇偶性排除选项,利用特殊点的位置排除选项即可.【题目详解】函数f(x)=x⋅ln|x|是奇函数,排除选项A,当x=1e时,y=-1e,对应点在故选:D.【题目点拨】本题考查函数的图象的判断,函数的奇偶性以及特殊点的位置是判断函数的图象的常用方法.2、A【解题分析】
利用等比数列性质可求得,将所求式子利用对数运算法则和等比数列性质可化为,代入求得结果.【题目详解】且本题正确选项:【题目点拨】本题考查等比数列性质的应用,关键是灵活利用等比中项的性质,属于基础题.3、B【解题分析】
先解出不等式的解集,得到当时,不等式的解集,最后求出它们的交集即可.【题目详解】因为,所以,因为,所以,要想使得都成立,所以取值范围是,故本题选B.【题目点拨】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力.4、A【解题分析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【题目详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【题目点拨】本题考查球的体积,关键是确定球心位置求出球的半径.5、B【解题分析】
根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【题目详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【题目点拨】本题考查了等比数列前项和的性质,考查了数学运算能力.6、B【解题分析】
根据确定的两个相邻零点的值可以求出最小正周期,进而利用正弦型最小正周期公式求出的值,最后把其中的一个零点代入函数的解析式中,求出的值即可.【题目详解】设函数的最小正周期为,因此有,当时,,因此的坐标为:.故选:B【题目点拨】本题考查了通过三角函数的图象求参数问题,属于基础题.7、D【解题分析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【题目详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【题目点拨】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.8、C【解题分析】
由得为等差数列,求得,得利用裂项相消求解即可【题目详解】由得,当时,,整理得,所以是公差为4的等差数列,又,所以,从而,所以,数列的前10项的和.故选.【题目点拨】本题考查递推关系求通项公式,等差数列的通项及求和公式,裂项相消求和,熟记公式,准确得是等差数列是本题关键,是中档题9、B【解题分析】
通过给定条件直接利用正弦定理分析,注意讨论多解的情况.【题目详解】由正弦定理可得:,,∵,∴为锐角或钝角,∴或.故选B.【题目点拨】本题考查解三角形中正弦定理的应用,难度较易.出现多解时常借助“大边对大角,小边对小角”来进行取舍.10、C【解题分析】
先求出的坐标,再利用向量平行的坐标表示求出c的值.【题目详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【题目点拨】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【题目详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【题目点拨】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.12、【解题分析】
作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【题目详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【题目点拨】本题考查异面直线所成的角,属于中档题.13、或【解题分析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【题目详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【题目点拨】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。14、【解题分析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【题目详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【题目点拨】本题考查了三角函数的周期性,属于基础题.15、【解题分析】
利用诱导公式以及正弦差角公式化简式子,之后利用特殊角的三角函数值直接计算即可.【题目详解】.故答案为【题目点拨】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,差角正弦公式,特殊角的三角函数值,属于简单题目.16、117【解题分析】
由成等比数列求出公差,由前项公式求和.【题目详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【题目点拨】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】
(1)取中点,连结,,推导出,,从而平面平面,由此能证明直线平面;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】(1)证明:取中点,连结,,,是的中点,,,,,平面平面,平面,直线平面.(2)解:,,底面,,是的中点,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,设平面的法向量,,,则,取,得.设平面的法向量,,,则,取,得.设二面角的平面角为,则.二面角的余弦值为.【题目点拨】本题主要考查线面平行的证明,考查二面角的余弦值的求法,考查运算求解能力,属于中档题.18、(1)(2)最大值为,此时【解题分析】
(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【题目详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【题目点拨】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考查解决问题的能力、仔细理解题,才能将实际问题转化为数学模型进行解答.19、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)利用二倍角公式化简函数,再逆用两角和的正弦公式进一步化简函数,代入最小正周期公式即可得解;(Ⅱ)由得,则,求解x并写成集合形式.【题目详解】(Ⅰ),所以函数的最小正周期.(Ⅱ)由得,,解得因此方程的解构成的集合是:.【题目点拨】本题考查简单的三角恒等变换,已知三角函数值求角的集合,属于基础题.20、(1);(2)【解题分析】
(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【题目详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.21、(1),,定义域;(2)【解题分析】
(1)由已知得,可求出、,由对数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年质量员(设备安装)专业技能复习题库及答案(二)
- 2025年消防系统改造项目施工合同范本5篇
- 2024系统安装合同范本
- 2025年电子元器件销售合同补充协议书2篇
- 非洲基站施工方案
- 林业防鼠灭鼠施工方案
- 二零二五版小型家用发电机安全使用指南与心得分享合同3篇
- 二零二五年度水产养殖害虫防治与养殖环境合同4篇
- 党课廉政党课课件
- 2025年度法律服务代理委托授权书3篇
- 2023年上海英语高考卷及答案完整版
- 西北农林科技大学高等数学期末考试试卷(含答案)
- 金红叶纸业简介-2 -纸品及产品知识
- 《连锁经营管理》课程教学大纲
- 《毕淑敏文集》电子书
- 颈椎JOA评分 表格
- 员工岗位能力评价标准
- 定量分析方法-课件
- 朱曦编著设计形态知识点
- 110kV变电站工程预算1
- 某系统安全安全保护设施设计实施方案
评论
0/150
提交评论