2024届安徽省舒城桃溪数学高一下期末监测模拟试题含解析_第1页
2024届安徽省舒城桃溪数学高一下期末监测模拟试题含解析_第2页
2024届安徽省舒城桃溪数学高一下期末监测模拟试题含解析_第3页
2024届安徽省舒城桃溪数学高一下期末监测模拟试题含解析_第4页
2024届安徽省舒城桃溪数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省舒城桃溪数学高一下期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,输出S的值为()A.- B. C.- D.2.已知、为锐角,,,则()A. B. C. D.3.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移4.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m5.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.6.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.已知,且,则下列不等式正确的是()A. B. C. D.8..若且,直线不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限,9.已知,,则在方向上的投影为()A. B. C. D.10.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>0二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若,则______;若,则______.12.已知,那么__________.13.若实数满足,,则__________.14.已知数列的前项和为,则其通项公式__________.15.直线x-316.设点是角终边上一点,若,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)18.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.19.已知数列的前项和为.(Ⅰ)当时,求数列的通项公式;(Ⅱ)当时,令,求数列的前项和.20.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.21.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:由已知可得,故选D.考点:程序框图.2、B【解题分析】

利用同角三角函数的基本关系求出的值,然后利用两角差的正切公式可求得的值.【题目详解】因为,且为锐角,则,所以,因为,所以故选:B.【题目点拨】本题考查利用两角差的正切公式求值,解答的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.3、B【解题分析】

先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【题目详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【题目点拨】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.4、A【解题分析】

在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【题目详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【题目点拨】本题考查了锐角三角函数的应用,考查了数学运算能力.5、A【解题分析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.6、D【解题分析】

利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【题目详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.

所以,所以有,所以正确.故选:D【题目点拨】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.7、B【解题分析】

通过反例可排除;根据的单调性可知正确.【题目详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【题目点拨】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.8、D【解题分析】

因为且,所以,,又直线可化为,斜率为,在轴截距为,因此直线过一二三象限,不过第四象限.故选:D.9、A【解题分析】在方向上的投影为,选A.10、A【解题分析】

结合选项逐个分析,可选出答案.【题目详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【题目点拨】本题考查了不等式的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解题分析】

由向量平行与垂直的性质,列出式子计算即可.【题目详解】若,可得,解得;若,则,解得.故答案为:6;.【题目点拨】本题考查平面向量平行、垂直的性质,考查平面向量的坐标运算,考查学生的计算能力,属于基础题.12、2017【解题分析】,故,由此得.【题目点拨】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.13、【解题分析】

由反正弦函数的定义求解.【题目详解】∵,∴,,∴,∴.故答案为:.【题目点拨】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.14、【解题分析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.15、π【解题分析】

将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【题目详解】因为x-3所以y=33x-33则tanα=33,α=【题目点拨】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.16、【解题分析】

根据任意角三角函数的定义,列方程求出m的值.【题目详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【题目点拨】本题考查了任意角三角函数的定义与应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该公司应开设4个分店时,在该区的每个分店的平均利润最大【解题分析】

(1)由表中数据先求得.再结合公式分别求得,即可得y关于x的线性回归方程.(2)将(1)中所得结果代入中,进而表示出每个分店的平均利润,结合基本不等式即可求得最值及取最值时自变量的值.【题目详解】(1)由表中数据和参考数据得:,,因而可得,,再代入公式计算可知,∴,∴.(2)由题意,可知总收入的预报值与x之间的关系为:,设该区每个分店的平均利润为t,则,故t的预报值与x之间的关系为,当且仅当时取等号,即或(舍)则当时,取到最大值,故该公司应开设4个分店时,在该区的每个分店的平均利润最大.【题目点拨】本题考查了线性回归方程的求法,基本不等式求函数的最值及等号成立的条件,属于基础题.18、(1)见解析(2)见解析【解题分析】

(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【题目详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【题目点拨】本题考查直线和平面垂直的判定,平面和平面平行的判断,比较基础.19、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)利用的方法,进行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化简得,然后利用裂项求和,求出数列的前项和【题目详解】解:(Ⅰ)数列的前项和为①.当时,,当时,②,①﹣②得:,(首相不符合通项),所以:(Ⅱ)当时,①,当时,②,①﹣②得:,所以:令,所以:,则:【题目点拨】本题考查求数列通项的求法的应用,以及利用裂项求和法进行求和,属于基础题20、(1)或;(2);(3)存在,理由见解析【解题分析】

求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【题目详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【题目点拨】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论