版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届聊城市重点中学高一数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.2.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.203.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.4.设偶函数定义在上,其导数为,当时,,则不等式的解集为()A. B.C. D.5.直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.6.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品7.函数的单调增区间是()A. B.C. D.8.若函数的最小正周期为2,则()A.1 B.2 C. D.9.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”10.设,则“”是“”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.和的等差中项为__________.12.已知向量(1,2),(x,4),且∥,则_____.13.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.14.若6是-2和k的等比中项,则______.15.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.16.函数,的反函数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.18.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.19.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.20.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.21.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【题目详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【题目点拨】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.2、B【解题分析】
根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【题目详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【题目点拨】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.3、B【解题分析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【题目详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【题目点拨】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.4、C【解题分析】构造函数,则,所以当时,,单调递减,又在定义域内为偶函数,所以在区间单调递增,单调递减,又等价于,所以解集为.故选C.点睛:本题考查导数的构造法应用.本题中,由条件构造函数,结合函数性质,可得抽象函数在区间单调递增,单调递减,结合函数草图,即可解得不等式解集.5、D【解题分析】
由直线方程可得直线恒过点,利用两点连线斜率公式可求得临界值和,从而求得结果.【题目详解】直线恒过点则,本题正确选项:【题目点拨】本题考查利用直线与线段有交点确定直线斜率取值范围的问题,关键是能够确定直线恒过的定点,从而找到直线与线段有交点的临界状态.6、B【解题分析】
根据对立事件的概念,选出正确选项.【题目详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【题目点拨】本小题主要考查对立事件的理解,属于基础题.7、D【解题分析】
化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【题目详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【题目点拨】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.8、C【解题分析】
根据可求得结果.【题目详解】由题意知:,解得:本题正确选项:【题目点拨】本题考查余弦型函数最小正周期的求解问题,属于基础题.9、D【解题分析】
写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【题目详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【题目点拨】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.10、C【解题分析】
首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【题目详解】由解得.由得.所以“”是“”的必要而不充分条件故选:C【题目点拨】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设和的等差中项为,利用等差中项公式可得出的值.【题目详解】设和的等差中项为,由等差中项公式可得,故答案为:.【题目点拨】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.12、.【解题分析】
根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【题目详解】由题意,向量,则,解得,所以,则,所以.【题目点拨】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、1.【解题分析】
取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【题目详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【题目点拨】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.14、-18【解题分析】
根据等比中项的性质,列出等式可求得结果.【题目详解】由等比中项的性质可得,,得.故答案为:-18【题目点拨】本题主要考查等比中项的性质,属于基础题.15、4【解题分析】
根据圆台轴截面等腰梯形计算.【题目详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【题目点拨】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.16、【解题分析】
将函数变形为的形式,然后得到反函数,注意定义域.【题目详解】因为,所以,则反函数为:且.【题目点拨】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.18、(1);(2).【解题分析】
(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【题目详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【题目点拨】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.19、(1)见解析;(2).【解题分析】
(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【题目详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵为的中点,为的中点,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)连结,交于点,连结,由对称性知,为的中点,且,.∵平面平面,,∴平面,,.以为坐标原点,的方向为轴正方向,建立空间直角坐标系.则(0,,0),(3,0,0),(0,0,1).易知平面的一个法向量为.设平面的法向量为,则,,∴,∵,,∴.令,得,∴,∴.设二面角的大小为,则.【题目点拨】本道题考查了平面与平面平行判定和性质,考查了空间向量数量积公式,关键建立空间坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度工业用地租赁居间合同范本4篇
- 2025餐饮业食品安全溯源技术合作合同范本3篇
- 2024版深水井施工合同
- 2025年叉车租赁合同范本一(含绿色节能要求)4篇
- 二零二五年度补充协议范本:签约次数规定及实施标准3篇
- 2024矿业资产买卖贷款居间服务协议版B版
- 二零二五年度风力发电机组安装与维护协议6篇
- 2024铁路道岔施工及维护管理服务协议3篇
- 2025年度5G通信技术合作研发合同4篇
- 2025年度柴油市场信息居间服务合同4篇
- 2024年秋季学期学校办公室工作总结
- 上海市12校2025届高三第一次模拟考试英语试卷含解析
- 三年级数学(上)计算题专项练习附答案集锦
- 铺大棚膜合同模板
- 长亭送别完整版本
- 《铁路轨道维护》课件-更换道岔尖轨作业
- 股份代持协议书简版wps
- 职业学校视频监控存储系统解决方案
- 《销售心理学培训》课件
- 2024年安徽省公务员录用考试《行测》真题及解析
- 你比我猜题库课件
评论
0/150
提交评论