2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题含解析_第1页
2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题含解析_第2页
2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题含解析_第3页
2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题含解析_第4页
2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省兴宁市水口中学数学高一下期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,是的直观图,其中轴,轴,那么是()A.等腰三角形 B.钝角三角形 C.等腰直角三角形 D.直角三角形2.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.3.设等比数列的公比,前n项和为,则()A.2 B.4 C. D.4.在中,为线段上的一点,,且,则A., B.,C., D.,5.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.6.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.37.已知,那么()A. B. C. D.8.已知为锐角,角的终边过点,则()A. B. C. D.9.在正方体中,分别是线段的中点,则下列判断错误的是()A.与垂直 B.与垂直C.与平行 D.与平行10.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.设点是角终边上一点,若,则=____.12.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-513.已知直线与圆相交于,两点,则=______.14.若方程表示圆,则实数的取值范围是______.15.已知,则的值为.16.若点关于直线的对称点在函数的图像上,则称点、直线及函数组成系统,已知函数的反函数图像过点,且第一象限内的点、直线及函数组成系统,则代数式的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.18.已知函数.(I)求的最小正周期;(II)求在上的最大值与最小值.19.己知角的终边经过点.求的值;求的值.20.如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.(1)要使矩形的面积大于64平方米,则的长应在什么范围内?(2)当的长为多少时,矩形花坛的面积最小?并求出最小值.21.在等差数列中,为其前项和(),且,.(1)求数列的通项公式;(2)设,数列的前项为,证明:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用斜二测画法中平行于坐标轴的直线,平行关系不变这个原则得出的形状.【题目详解】在斜二测画法中,平行于坐标轴的直线,平行关系不变,则在原图形中,轴,轴,所以,,因此,是直角三角形,故选D.【题目点拨】本题考查斜二测直观图还原,解题时要注意直观图的还原原则,并注意各线段长度的变化,考查分析能力,属于基础题.2、A【解题分析】

求出函数的周期,函数的奇偶性,判断求解即可.【题目详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.3、D【解题分析】

设首项为,利用等比数列的求和公式与通项公式求解即可.【题目详解】设首项为,因为等比数列的公比,所以,故选:D.【题目点拨】本题主要考查等比数列的求和公式与通项公式,熟练掌握基本公式是解题的关键,属于基础题.4、A【解题分析】

根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值【题目详解】由题意,∵,∴,即,∴,即故选A.【题目点拨】本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.5、D【解题分析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.6、C【解题分析】

利用向量乘法公式得到答案.【题目详解】向量,,,的夹角为45°故答案选C【题目点拨】本题考查了向量的运算,意在考查学生的计算能力.7、C【解题分析】试题分析:由,得.故选B.考点:诱导公式.8、B【解题分析】

由题意利用任意角的三角函数的定义求得和,再利用同角三角函数的基本关系求得的值,再利用两角差的余弦公式求得的值.【题目详解】角的终边过点,,又为锐角,由,可得故选B.【题目点拨】本题考查任意角的三角函数的定义,考查两角差的余弦,是基础题.9、D【解题分析】

利用数形结合,逐一判断,可得结果.【题目详解】如图由分别是线段的中点所以//A选项正确,因为,所以B选项正确,由,所以C选项正确D选项错误,由//,而与相交,所以可知,异面故选:D【题目点拨】本题主要考查空间中直线与直线的位置关系,属基础题.10、B【解题分析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【题目详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【题目点拨】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据任意角三角函数的定义,列方程求出m的值.【题目详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【题目点拨】本题考查了任意角三角函数的定义与应用问题,属于基础题.12、④【解题分析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【题目详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【题目点拨】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.13、.【解题分析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【题目详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【题目点拨】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.14、.【解题分析】

把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【题目详解】由题意,方程可化为,方程表示圆,则满足,解得.【题目点拨】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.15、【解题分析】

利用商数关系式化简即可.【题目详解】,故填.【题目点拨】利用同角的三角函数的基本关系式可以化简一些代数式,常见的方法有:(1)弦切互化法:即把含有正弦和余弦的代数式化成关于正切的代数式,也可以把含有正切的代数式化为关于余弦和正弦的代数式;(2)“1”的代换法:有时可以把看成.16、【解题分析】

根据函数的反函数图像过点可求出,由、直线及函数组成系统可知在的图象上,且,代入化简为,换元则,利用单调性求解.【题目详解】因为函数的反函数图像过点,所以,即,由、直线及函数组成系统知在上,所以,代入化简得,令由知,故则在上单调递减,所以当即时,,故填.【题目点拨】本题主要考查了对称问题,反函数概念,根据条件求最值,函数的单调性,换元法,综合性大,难度大,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【题目详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【题目点拨】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.18、(I);(II)3,.【解题分析】

(I)利用降次公式和辅助角公式化简解析式,由此求得的最小正周期.(II)根据函数的解析式,以及的取值范围,结合三角函数值域的求法,求得在区间上的最大值与最小值.【题目详解】(I)的最小正周期.(Ⅱ),.【题目点拨】本小题主要考查降次公式和辅助角公式,考查三角函数在闭区间上的最值的求法,属于中档题.19、(1)(2)【解题分析】

(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【题目详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【题目点拨】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.20、(1),(2)时,【解题分析】

(1)设,有题知,得到,再计算矩形的面积,解不等式即可.(2)首先将花坛的面积化简为,再利用基本不等式的性质即可求出面积的最小值.【题目详解】(1)设,.因为四边形为矩形,所以.即:,解得:.所以,.所以,,解得或.因为,所以或.所以的长度范围是.(2)因为.当且仅当,即时取“”.所以当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论