内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题含解析_第1页
内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题含解析_第2页
内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题含解析_第3页
内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题含解析_第4页
内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古乌兰察布集宁二中2024届数学高一下期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知四棱锥的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为,SE与平面ABCD所成的角为β,二面角S-AB-C的平面角为,则()A. B. C. D.2.运行如图程序,若输入的是,则输出的结果是()A.3 B.9 C.0 D.3.若,则()A. B. C. D.4.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.5.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.46.设,是两个不同的平面,a,b是两条不同的直线,给出下列四个命题,正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则7.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.8.在直角中,,线段上有一点,线段上有一点,且,若,则()A.1 B. C. D.9.在中,,且,若,则()A.2 B.1 C. D.10.设等差数列{an}的前n项和为Sn.若a1+a3=6,S4=16,则a4=()A.6 B.7 C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,,以后各项由公式给出,则等于_____.12.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.13.不等式的解集是_______.14.若,且,则的最小值为_______.15.执行如图所示的程序框图,则输出的S的值是______.16.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直三棱柱中,,为的中点,为的中点.(1)求证:平面;(2)求证:.18.我市某商场销售小饰品,已知小饰品的进价是每件3元,且日均销售量件与销售单价元可以用这一函数模型近似刻画.当销售单价为4元时,日均销售量为400件,当销售单价为8元时,日均销售量为240件.试求出该小饰品的日均销售利润的最大值及此时的销售单价.19.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.20.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.21.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据题意,分别求出SE与BC所成的角、SE与平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱锥的线段大小关系即可比较大小.【题目详解】四棱锥的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过作,交于,过底面中心作交于,连接,取中点,连接,如下图(1)所示:则;(2)连接如下图(2)所示,则;(3)连接,则,如下图(3)所示:因为所以,而均为锐角,所以故选:C.【题目点拨】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.2、B【解题分析】分析:首先根据框图中的条件,判断-2与1的大小,从而确定出代入哪个解析式,从而求得最后的结果,得到输出的值.详解:首先判断成立,代入中,得到,从而输出的结果为9,故选B.点睛:该题考查的是有关程序框图的问题,在解题的过程中,需要注意的是要明确自变量的范围,对应的函数解析式应该代入哪个,从而求得最后的结果,属于简单题目.3、A【解题分析】试题分析:,故选A.考点:两角和与差的正切公式.4、D【解题分析】

根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【题目详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【题目点拨】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.5、C【解题分析】

求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【题目详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【题目点拨】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.6、C【解题分析】

利用线面、面面之间的位置关系逐一判断即可.【题目详解】对于A,若,,则平行、相交、异面均有可能,故A不正确;对于B,若,,,则垂直、平行均有可能,故B不正确;对于C,若,,,根据线面垂直的定义可知内的两条相交线线与内的两条相交线平行,故,故C正确;对于D,由C可知,D不正确;故选:C【题目点拨】本题考查了由线面平行、线面垂直判断线面、线线、面面之间的位置关系,属于基础题.7、D【解题分析】

先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【题目详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、D【解题分析】

依照题意采用解析法,建系求出目标向量坐标,用数量积的坐标表示即可求出结果.【题目详解】如图,以A为原点,AC,AB所在直线分别为轴建系,依题设A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故选D.【题目点拨】本题主要考查解析法在向量中的应用,意在考查学生数形结合的能力.9、A【解题分析】

取的中点,连接,根据,即可得解.【题目详解】取的中点,连接,在中,,且,所以,.故选:A【题目点拨】此题考查求向量的数量积,涉及平面向量的线性运算,根据数量积的几何意义求解,可以简化计算.10、B【解题分析】

利用等差数列的性质对已知条件进行化简,由此求得的值.【题目详解】依题意,解得.故选:B【题目点拨】本小题主要考查等差中项的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【题目详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【题目点拨】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解题分析】

利用正弦定理得到,再根据有两解得到,计算得到答案.【题目详解】由正弦定理得:若有两解:故答案为【题目点拨】本题考查了正弦定理,有两解,意在考查学生的计算能力.13、【解题分析】

且,然后解一元二次不等式可得解集.【题目详解】解:,∴且,或,不等式的解集为,故答案为:.【题目点拨】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.14、【解题分析】

将变换为,展开利用均值不等式得到答案.【题目详解】若,且,则时等号成立.故答案为【题目点拨】本题考查了均值不等式,“1”的代换是解题的关键.15、4【解题分析】

模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【题目详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【题目点拨】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.16、①③【解题分析】

根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解题分析】

(1)连、相交于点,证明四边形为平行四边形,得到,证明平面(2)证明平面推出【题目详解】证明:(1)如图,连、相交于点,,,,,,,∴四边形为平行四边形,,平面,平面,平面,…(2)连因为三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【题目点拨】本题考查了线面平行,线线垂直,线面垂直,意在考查学生的空间想象能力.18、当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【解题分析】

根据已知条件,求出,利润,转化为求二次函数的最大值,即可求解.【题目详解】解:由题意,得解得所以日均销售量件与销售单价元的函数关系为.日均销售利润.当,即时,.所以当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【题目点拨】本题考查函数实际应用问题,确定函数解析式是关键,考查二次函数的最值,属于基础题19、(1);(2)不存在,理由见详解;(3)见详解.【解题分析】

(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【题目详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【题目点拨】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.20、(1)见证明;(2)【解题分析】

(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【题目详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【题目点拨】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论