




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市厦门第一中学2024届高一数学第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个2.在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则()A.6 B.5 C.4 D.33.已知不等式的解集为,则不等式的解集为()A. B.C. D.4.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.755.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.6.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.8.某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为()A.200 B.400 C.2000 D.40009.在中,,,,则的面积为A. B. C. D.10.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要二、填空题:本大题共6小题,每小题5分,共30分。11.若,则实数的值为_______.12.已知角α的终边与单位圆交于点.则___________.13.直线和将单位圆分成长度相等的四段弧,则________.14.已知等比数列、、、满足,,,则的取值范围为__________.15.一个扇形的圆心角是2弧度,半径是4,则此扇形的面积是______.16.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从半径为1的半圆出发,以此向内、向外连续作半圆,且后一个半圆的直径为前一个半圆的半径,如此下去,可得到无数个半圆.(1)求出所有这些半圆围城的封闭图形的周长;(2)求出所有这些半圆围城的封闭图形的面积.18.已知向量.(1)当时,求的值;(2)设函数,当时,求的值域.19.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.20.已知向量,,,.(1)求的最小值及相应的t的值;(2)若与共线,求实数m.21.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
对各选项逐个论证或给出反例后可得正确的命题的个数.【题目详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【题目点拨】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.2、D【解题分析】
由众数就是出现次数最多的数,可确定,题中中位数是中间两个数的平均数,这样可计算出.【题目详解】由甲组数据的众数为11,得,乙组数据中间两个数分别为6和,所以中位数是,得到,因此.故选:D.【题目点拨】本题考查众数和中位数的概念,掌握众数与中位数的定义是解题基础.3、A【解题分析】
根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得;利用一元二次不等式的解法可求得结果.【题目详解】的解集为和是方程的两根,且,解得:解得:,即不等式的解集为故选:【题目点拨】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.4、C【解题分析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【题目详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【题目点拨】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.5、D【解题分析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【题目详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【题目点拨】本题考查平面向量数量积的性质及运算,属于中档题.6、B【解题分析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移7、A【解题分析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【题目详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【题目点拨】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.8、A【解题分析】
由频率和为1,可算得成绩大于90分对应的频率,然后由频数÷总数=频率,即可得到本题答案.【题目详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【题目点拨】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数÷总数=频率的应用.9、C【解题分析】
利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【题目详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【题目点拨】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.10、C【解题分析】
由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【题目详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【题目点拨】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由得,代入方程即可求解.【题目详解】,.,,,即,故填.【题目点拨】本题主要考查了反三角函数的定义及运算性质,属于中档题.12、【解题分析】
直接利用三角函数的坐标定义求解.【题目详解】由题得.故答案为【题目点拨】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.13、0【解题分析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【题目详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【题目点拨】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.14、【解题分析】
设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【题目详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【题目点拨】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.15、16【解题分析】
利用公式直接计算即可.【题目详解】扇形的面积.故答案为:.【题目点拨】本题考查扇形的面积,注意扇形的面积公式有两个:,其中为扇形的半径,为圆心角的弧度数,为扇形的弧长,可根据题设条件合理选择一个,本题属于基础题.16、.【解题分析】
根据等积法可得∴三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由第n个半圆的周长得,再利用无穷等比数列求和即可(2)由第n个半圆的面积得,再利用无穷等比数列求和即可【题目详解】(1)由题意知,圆的半径满足数列,设第n个半圆的周长为,所以,则所有这些半圆围成的封闭图形的周长.(2)题意知,设第n个半圆的面积为,则,所以所有这些半圆围成的封闭图形的面积将为.【题目点拨】本题考查无穷等比数列的和,注意圆的半径为等比数列,是周长及面积的考查,是基础题18、(1)-7,(2)【解题分析】试题分析:(1)由向量共线得到等量关系,求出角的正切值,再利用两角差正切公式求解:(2)先根据向量数量积,利用二倍角公式及配角公式得到三角函数关系式,再从角出发研究基本三角函数范围:试题解析:(1),3分6分(2)8分11分,的值域为14分考点:向量平行坐标表示,三角函数性质19、(1)证明见解析;(2).【解题分析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【题目详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【题目点拨】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.20、(1)时,最小值为;(2).【解题分析】
(1)利用向量的模长公式计算出的表达式然后求最值.
(2)先求出的坐标,利用向量平行的公式得到关于m的方程,可解得答案.【题目详解】(1)∵,
∴当时,取得最小值.(2).∵与共线,∴,则.【题目点拨】本题考查向量的模长的计算以及其最值和根据向量平行求参数的值,属于基础题.21、(Ⅰ);(Ⅱ)或.【解题分析】
(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考生物减数分裂重要知识点汇编
- 2025至2031年中国工业卡式电脑机箱行业投资前景及策略咨询研究报告
- 2025至2031年中国宽带Modem主板行业投资前景及策略咨询研究报告
- AI技术助力远程医疗服务发展推动疾病预防工作深入开展
- 汛期学校防灾工作汇报(3篇)
- 建筑实习总结模板(31篇)
- 六年级教师工作心得感想(28篇)
- 2025年个人销售工作总结范文(31篇)
- 流感用药治疗宣传
- 国产亚低温治疗仪使用
- 改革开放与新时代知到智慧树章节测试课后答案2024年秋同济大学
- 2024年山东省青岛市局属公办普通高中化学自招真题
- 1立方米砼模板含量表
- 紫藤萝瀑布的说课稿
- 部编教材八年级历史上册第四单元第13课《五四运动》教学设计
- 无菌GMP 操作指南:无菌医疗器械生产过程确认
- 海因环氧树脂的制备及其应用
- 罗甸县从里水库管道输水工程施工方案
- UWI海威清创机使用说明书
- 《一元一次不等式与一次函数》第课时示范教案
- 刮板式花生脱壳机设计
评论
0/150
提交评论