




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省隆回县2024届数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面2.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.283.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.4.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.5.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,326.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水7.不等式的解集为()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)8.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.9.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.10.高一数学兴趣小组共有5人,编号为.若从中任选3人参加数学竞赛,则选出的参赛选手的编号相连的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.终边经过点,则_____________12.若数列的前4项分别是,则它的一个通项公式是______.13.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.14.函数的定义域________.15.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.16.不等式的解集是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.18.已知,,且.(1)求函数的最小正周期;(2)若用和分别表示函数W的最大值和最小值.当时,求的值.19.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)20.已知数列满足:,,.(1)求、、;(2)求证:数列为等比数列,并求其通项公式;(3)求和.21.已知.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
当时与相交,当时与异面.【题目详解】当时与相交,当时与异面.故答案为D【题目点拨】本题考查了直线的位置关系,属于基础题型.2、C【解题分析】
根据等差数列的求和与通项性质求解即可.【题目详解】等差数列前n项的和为,故.故.故选:C【题目点拨】本题主要考查了等差数列通项与求和的性质运用,属于基础题.3、C【解题分析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.4、B【解题分析】
利用三角函数的平移和伸缩变换的规律求出即可.【题目详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.5、D【解题分析】
由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【题目详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【题目点拨】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.6、B【解题分析】
降水概率指的是降水的可能性,根据概率的意义作出判断即可.【题目详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【题目点拨】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.7、A【解题分析】
将原不等式化简并因式分解,由此求得不等式的解集.【题目详解】原不等式等价于,即,解得.故选A.【题目点拨】本小题主要考查一元二次不等式的解法,属于基础题.8、A【解题分析】
模拟程序运行,观察变量值,判断循环条件可得结论.【题目详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【题目点拨】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.9、B【解题分析】
利用椭圆的性质列出不等式求解即可.【题目详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【题目点拨】本题考查椭圆的方程及简单性质的应用,基本知识的考查.10、A【解题分析】
先考虑从个人中选取个人参加数学竞赛的基本事件总数,再分析选出的参赛选手的编号相连的事件数,根据古典概型的概率计算得到结果.【题目详解】因为从个人中选取个人参加数学竞赛的基本事件有:,共种,又因为选出的参赛选手的编号相连的事件有:,共种,所以目标事件的概率为.故选:A.【题目点拨】本题考查古典概型的简单应用,难度较易.求解古典概型问题的常规思路:先计算出基本事件的总数,然后计算出目标事件的个数,目标事件的个数比上基本事件的总数即可计算出对应的概率.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据正弦值的定义,求得正弦值.【题目详解】依题意.故答案为:【题目点拨】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.12、【解题分析】
根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【题目详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【题目点拨】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.13、【解题分析】
先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【题目详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【题目点拨】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.14、.【解题分析】
根据反正弦函数的定义得出,解出可得出所求函数的定义域.【题目详解】由反正弦的定义可得,解得,因此,函数的定义域为,故答案为:.【题目点拨】本题考查反正弦函数的定义域,解题的关键就是正弦值域的应用,考查运算求解能力,属于基础题.15、【解题分析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【题目详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【题目点拨】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.16、【解题分析】
因为,且抛物线开口方向向上,所以,不等式的解集是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、长和宽均为4m时,最小值为64【解题分析】
利用体积求得ab=16,只需表示出表面积,结合高为2m,利用基本不等式求出最值即可.【题目详解】设底面的长和宽分别为,因为体积为32,高为c=2m,所以底面积为16,即ab=16所用材料的面积S=2ab+2bc+2ca=32+4(a+b),当且仅当a=b=4时取等号,答:当底面的长和宽均为4m时,所用的材料表面积最少,其最小值为64【题目点拨】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1);(2).【解题分析】
(1)根据向量数量积的计算公式和三角恒等变换公式可将化简为,进而求得函数的最小正周期;(2)由可求得的范围,进而可求得的最大值和最小值,最后得解.【题目详解】(1)∴;(2),,,∴当时,,当时,,∴.【题目点拨】本题考查向量数量积的计算公式和三角恒等变换公式,考查三角函数的单调性和周期性,考查逻辑思维能力和计算能力,属于常考题.19、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解题分析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.20、(1);(2)证明见解析;(3).【解题分析】
(1)直接带入递推公式即可(2)证明等于一个常数即可。(3)根据(2)的结果即可求出,从而求出。【题目详解】(1),,可得;,;(2)证明:,可得数列为公比为,首项为等比数列,即;(3)由(2)可得,.【题目点拨】本题主要考查了根据通项求数列中的某一项,以及证明是等比数列和求前偶数项和的问题,在这里主要用了分组求和的方法。21、(1);(2).【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论