版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省江门市新会区梁启超纪念中学数学高一下期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线:与直线:垂直,则实数().A. B. C.2 D.或22.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.3.已知数列满足若,则数列的第2018项为()A. B. C. D.4.在等差数列中,,则等于()A.5 B.6 C.7 D.85.若,则下列不等式不成立的是()A. B. C. D.6.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.77.函数的图象如图所示,则y的表达式为()A. B.C. D.8.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面9.若,且,恒成立,则实数的取值范围是()A. B.C. D.10.已知幂函数过点,则的值为()A. B.1 C.3 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.点关于直线的对称点的坐标为_____.12.在△ABC中,已知30,则B等于__________.13.已知关于的不等式的解集为,则__________.14.函数的图像可由函数的图像至少向右平移________个单位长度得到.15.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.16.函数的初相是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期及单调递增区间:(2)求函数在区间上的最大值及取最大值时的集合.18.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:19.(1)计算(2)已知,求的值20.如图所示,在平面直角坐标系中,角和的顶点与坐标原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于点、两点,点的纵坐标为.(Ⅰ)求的值;(Ⅱ)若,求的值.21.已知(1)求函数的单调递减区间:(2)已知,求的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.2、D【解题分析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。3、A【解题分析】
利用数列递推式求出前几项,可得数列是以4为周期的周期数列,即可得出答案.【题目详解】,,,数列是以4为周期的周期数列,则.故选A.【题目点拨】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.4、C【解题分析】
由数列为等差数列,当时,有,代入求解即可.【题目详解】解:因为数列为等差数列,又,则,又,则,故选:C.【题目点拨】本题考查了等差数列的性质,属基础题.5、B【解题分析】
根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【题目详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【题目点拨】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.6、C【解题分析】
由题意利用线性回归方程的性质计算可得的值.【题目详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【题目点拨】本题主要考查线性回归方程的性质及其应用,属于中等题.7、B【解题分析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【题目详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【题目点拨】本题考查根据函数图像求正弦型函数的解析式,属于简单题.8、D【解题分析】
当时与相交,当时与异面.【题目详解】当时与相交,当时与异面.故答案为D【题目点拨】本题考查了直线的位置关系,属于基础题型.9、A【解题分析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【题目详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【题目点拨】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.10、C【解题分析】
设,代入点的坐标,求得,然后再求函数值.【题目详解】设,由题意,,即,∴.故选:C.【题目点拨】本题考查幂函数的解析式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设关于直线的对称点的坐标为,再根据中点在直线上,且与直线垂直求解即可.【题目详解】设关于直线的对称点的坐标为,则中点为,则在直线上,故①.又与直线垂直有②,联立①②可得.故.故答案为:【题目点拨】本题主要考查了点关于直线对称的点坐标,属于基础题.12、【解题分析】
根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【题目详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【题目点拨】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、-2【解题分析】为方程两根,因此14、【解题分析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.15、【解题分析】
由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.16、【解题分析】
根据函数的解析式即可求出函数的初相.【题目详解】,初相为.故答案为:【题目点拨】本题主要考查的物理意义,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),单调递增区间为;(2)最大值为,取最大值时,的集合为.【解题分析】
(1)对进行化简转换为正弦函数,可得其最小正周期和递增区间;(2)根据(1)的结果,可得正弦函数的最大值和此时的的集合.【题目详解】解:(1)∴.增区间为:即单调递增区间为(2)当时,的最大值为,此时,∴取最大值时,的集合为.【题目点拨】本题考查二倍角公式和辅助角公式以及正弦函数的性质,属于基础题.18、见解析【解题分析】
(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【题目详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【题目点拨】关键点通过参考公式求出,的值,通过线性回归方程求解的是一个估计值。19、(1)1+;(2).【解题分析】
(1)利用对数的运算法则计算得解;(2)先化简已知得,再把它代入化简的式子即得解.【题目详解】(1)原式=1+;(2)由题得,所以.【题目点拨】本题主要考查对数的运算,考查诱导公式化简求值和同角的三角函数关系,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)由题意知的值,可求得和的值,即得所求式子的值;(Ⅱ)由题意知的值,由的值求得的值.【题目详解】(Ⅰ)由题意可得,,∴(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度非开挖施工工程技术咨询合同3篇
- 2024年度文化旅游与景区运营合同2篇
- 防火门产品研发与技术升级合同2篇
- 2024年度物业管理有限公司房屋租赁合同3篇
- 2024年度二手挖机交易合同书3篇
- 二手房屋买卖合同2024版:甲方出售位于某市某街道的一套住宅乙方贷款购买贷款金额为人民币0万元3篇
- 二零二四年文化创意设计与推广合同
- 2024年度智慧城市数据中心建设与运维合同2篇
- 二零二四年度股权投资合同:创业公司Pre-A轮投资与合作2篇
- 二零二四年股权转让合同服务内容扩展2篇
- 《民用建筑项目节能评估技术导则》
- (2024年)《口腔医学美学》课件
- 七年级英语下册读写综合专项训练
- 门诊护患沟通技巧(简)
- 放射性物质的标志与标识
- 2024年传染病培训课件
- 肿瘤科护理培训总结报告
- 农民心理健康教育
- 生猪屠宰厂员工培训方案
- 天冬中药材种植可行性研究报告
- 电力抢修培训课件
评论
0/150
提交评论