




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春实验高中数学高一下期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下面一段程序执行后的结果是()A.6 B.4 C.8 D.102.设全集,集合,则()A. B. C. D.3.已知满足,则()A.1 B.3 C.5 D.74.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件5.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc26.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若,则下列数学模型中最能刻画“糖水变得更甜”的是()A. B.C. D.7.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.8.已知向量,,若,则()A. B. C. D.9.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或10.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.12.数列是等比数列,,,则的值是________.13.若,且,则=_______.14.已知锐角、满足,,则________.15.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.16.等比数列中首项,公比,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.18.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.19.已知向量,的夹角为120°,且||=2,||=3,设32,2.(Ⅰ)若⊥,求实数k的值;(Ⅱ)当k=0时,求与的夹角θ的大小.20.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.21.在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据题中的程序语句,直接按照顺序结构的功能即可求出。【题目详解】由题意可得:,,,所以输出为6,故选A.【题目点拨】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。2、B【解题分析】
先求出,由此能求出.【题目详解】∵全集,集合,∴,∴.故选B.【题目点拨】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.3、B【解题分析】
已知两个边和一个角,由余弦定理,可得。【题目详解】由题得,,,代入,化简得,解得(舍)或.故选:B【题目点拨】本题考查用余弦定理求三角形的边,是基础题。4、C【解题分析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件5、C【解题分析】
利用特殊值对错误选项进行排除,然后证明正确的不等式.【题目详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【题目点拨】本小题主要考查不等式的性质,属于基础题.6、B【解题分析】
由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论.【题目详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B.【题目点拨】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题.7、B【解题分析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【题目详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【题目点拨】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.8、D【解题分析】
由共线向量的坐标表示可得出关于实数的方程,解出即可.【题目详解】向量,,且,,解得.故选:D.【题目点拨】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.9、C【解题分析】
利用直线与直线垂直的性质直接求解.【题目详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【题目点拨】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.10、B【解题分析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【题目详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【题目点拨】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.12、【解题分析】
由题得计算得解.【题目详解】由题得,所以.因为等比数列同号,所以.故答案为:【题目点拨】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.13、【解题分析】
由的值及,可得的值,计算可得的值.【题目详解】解:由,且,由,可得,故,故答案为:.【题目点拨】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.14、.【解题分析】试题分析:由题意,所以.考点:三角函数运算.15、【解题分析】
求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【题目详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【题目点拨】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.16、9【解题分析】
根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【题目详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【题目点拨】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.18、(1);(2)4【解题分析】
(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【题目详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:解得即取得:的最小值为4.【题目点拨】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.19、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)利用⊥,结合向量的数量积的运算公式,得到关于的方程,即可求解;(Ⅱ)当时,利用向量的数量积的运算公式,以及向量的夹角公式,即可求解.【题目详解】(Ⅰ)由题意,向量,的夹角为120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)当k=0时,,则.因为,由向量的夹角公式,可得,又因为0≤θ≤π,∴,所以与的夹角θ的大小为.【题目点拨】本题主要考查了向量的数量积的运算,以及向量的夹角公式的应用,其中解答中熟记向量的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),,年龄在的人数为(2)【解题分析】
(1)根据第一组的频数和频率可得,由所有频率和为1可得,再求得间的频率后可得人数;(2)把第一组人数编号,如男性为,女性为,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率.【题目详解】(1),设第2组的频率为f,,所以,第3组和第4组的频率为,年龄在的人数为;(2)记第1组中的男性为,女性为,随机抽取3名群众的基本事件是:,,共20种;其中至少有两名女性的基本事件是:共16种.所以至少有两名女性的概率为.【题目点拨】本题考查频率分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 律师合作咨询协议书范本
- 县城门面转让协议书范本
- 车辆质押贷款合同模板(含车辆评估条款)
- 节日促销活动员工激励合同
- 事业单位停薪留职人员原单位业绩考核及奖励协议
- 餐饮企业股东合作协议与供应链优化
- 彩钢板房建筑项目施工安全与环境保护合同
- 离婚彩礼退还争议调解及仲裁协议
- 员工感恩培训
- 冬季检修安全培训
- 术后镇痛慢性疼痛癌性疼痛诊疗标准规范及作业流程
- 2022AHA-ACC-HFSA心衰管理指南解读
- 智慧能源管理云平台方案智慧能源综合服务方案智慧能源管理系统方案38-82
- 玻璃粉烧工艺
- 云计算和边缘计算在工业互联网中的融合
- 24年海南生物会考试卷
- 中南大学学科发展与规划处
- 高危孕产妇管理课件培训
- 天一大联考海南省2024届高一物理第二学期期末考试试题含解析
- 夏季驾驶员安全培训
- 计量经济学论文eviews
评论
0/150
提交评论