数字图像处理章频域图像增强_第1页
数字图像处理章频域图像增强_第2页
数字图像处理章频域图像增强_第3页
数字图像处理章频域图像增强_第4页
数字图像处理章频域图像增强_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章:频域图像增强频域滤波基础频域平滑滤波频域锐化滤波同态滤波4.1频域滤波基础任何周期函数可以表示为不同频率的正弦与余弦的加权和形式。

复杂函数可以用由简单的正弦和余弦函数表示。

下面的函数是上面四个函数的和。4.1频域滤波基础傅立叶级数:傅立叶变换:甚至非周期函数(曲线是有限的情况下)也可以用正弦和/或余弦乘以加权函数的积分表示。

用傅立叶级数或变换表示的函数特征可以通过傅立叶反变换重建,不丢失任何信息。4.1频域滤波基础单变量连续函数f(x)的傅立叶变换F(u)定义为:

二维连续函数f(x,y)的傅立叶变换F(u,v)定义为:4.1频域滤波基础在原点的傅立叶变换即等于图像的平均灰度级。二维离散傅立叶变换与反变换4.1频域滤波基础用极坐标表示F(u)比较方便:R(u)和I(u)分别为F(u)的实部和虚部4.1频域滤波基础4.1频域滤波基础在离散傅立叶变换中,函数f(x)中x的取值不一定是[0,M-1]中的整数值,而是任意选取的等间隔点.u总是从0频率开始4.1频域滤波基础一个简单的二维函数的中心谱

4.2傅立叶变换性质

二维傅立叶变换的基本性质:平移可以用于中心化变换,u和v的范围分别为[0,M-1]和[0,N-1],变换后的中心变为u=(M/2)+1,u=(N/2)+14.2傅立叶变换性质

二维傅立叶变换的基本性质:分配性和比例变换性傅立叶变换对加法具有分配性,对乘法没有:对于比例因子a和b,有:4.2傅立叶变换性质二维傅立叶变换的基本性质:旋转若引入极坐标那么f(x,y)和F(u,v)分别变成有4.2傅立叶变换性质4.2傅立叶变换性质

二维傅立叶变换的基本性质:周期性和对称性周期性:共轭对称4.2傅立叶变换性质用(-1)x+y乘以输入图像进行中心变换,使频域图像中心平移到u=M/2、v=N/2;计算图像的DFT,即F(u,v);用传递函数H(u,v)乘以F(u,v);计算(3)中结果的反DFT;得到(4)中结果的实部;用(-1)x+y

乘以(5)中的结果。图像频域滤波基本步骤图像频域滤波基本步骤4.2傅立叶变换性质4.2傅立叶变换性质陷波滤波器滤波器可以置F(0,0)为零,因为滤波器除原点处有凹陷外,其它处均为常量函数

输出图像整体平均灰度降低,边缘突出

实际上显示的图像平均值并不是零,因为这样的话,一定存在灰度上的负值。图中是按照所有负值显示成黑色,而其它值按比例增加。LowpassFilterHighpassFilter高通和低通滤波器高通滤波的结果空域滤波与频域滤波的对比图像的平滑除了在空间域中进行外,也可以在频率域中进行。边缘和一些尖锐噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制指定的高频成分,通过低频成分,然后再进行傅立叶反变换获得滤波图像,就可达到平滑图像的目的。4.3平滑的频域滤波器设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数为:由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会导致边缘信息损失而使图像边模糊。理想低通滤波器理想低通滤波器叠加的圆环具有5,15,30,80和230像素的半径,包含了92.0%94.6%,96.4%,98%和99.5%的图像功率。理想低通滤波器用半径为5,15,30,80和230的截止频率进行理想低通,滤除了8.0%,5.4%,3.6%,2%和0.5%的图像能量。振铃效应Butterworth低通滤波器

n阶Butterworth滤波器的传递函数为:

它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。Butterworth低通滤波器巴特沃斯滤波器的空间解释高斯低通滤波器

Gauss滤波器的传递函数为:高斯低通滤波器的傅立叶反变换也是高斯的,这意味着反变换后高斯滤波器将没有振铃现象产生。高斯低通滤波器低通滤波实例低通滤波实例低通滤波实例4.4频域锐化滤波理想高通滤波器巴特沃斯高通滤波器高斯型高通滤波器频率域的拉普拉斯算子高频提升与高频加强滤波理想高通滤波器巴特沃斯高通滤波器高斯高通滤波器三种高通滤波器的空间解释理想高通滤波结果巴特沃斯高通滤波结果高斯高通滤波结果4.4频率域锐化滤波器频率域的拉普拉斯算子:二维傅立叶变换后的拉普拉斯算子:一维傅立叶变换后的拉普拉斯算子:即:因此,频率域的拉普拉斯算子可以由如下滤波器实现:频域拉普拉斯滤波(a)频率域拉普拉斯的三维图(b)(a)的图像表示(c)从(b)的傅立叶反变换得到的空间域拉普拉斯(d)(c)中原图像的放大图像(e)通过(d)中心的灰度剖面图(f)拉普拉斯模板频域拉普拉斯滤波(a)月球北极图像(b)拉普拉斯滤波后的图像(c)标定后的图像(d)拉普拉斯频率增强的图像4.4频率域锐化滤波器钝化模板、高频提升滤波器和高频加强滤波钝化模板简单地由从一幅图像减去其自身模糊图像而生成的锐化图像构成。采用频率技术,这意味这从图像自身减去低通滤波后的图像而得到高通滤波的图像.高频提升过滤通过将f(x,y)乘上一个大于1的常熟A产生:可改写为:钝化模板在频率域中可由混合滤波器直接执行:类似的,高频提升过滤也可由混合滤波器直接执行:其中,A≥1,当A=1时,高频提升过滤为常规的高通过滤,A>1时,图象自身的贡献更加显著。高频提升滤波(a)输入图像(b)(a)的拉普拉斯图像(c)A=2时高频提升滤波得到的图像(d)A=2.7时的图像与图3.43相同,但用频率域滤波4.4频率域锐化滤波器利用图像的高频成分强调增强的作用高频增强:在高通滤波器前简单地乘以一个常数,再增加一个偏移以便使零频率不被滤波器除掉.4.4频率域锐化滤波器(a)胸部X光图像(b)巴特沃思高通滤波的结果(c)高频增强滤波的结果(d)执行直方图均衡的结果同态滤波是一种在频域中同时将图像亮度范围进行压缩和将图像对比度进行增强的方法。拍摄到的图像是光源照射到物体上后的反射特性的记录。因此,图像可被表示为照度和反射两部分的乘积。由于光源照射的不均匀性总是渐变的,所以照度分量的频谱处于低频处;而反射分量的变化相对而言较为剧烈,因此,可粗略的看成高频。为使图像中景物更为清晰,应尽量抑制前者,而增强后者。f(x,y)=i(x,y)*r(x,y)i(x,y)表照度分量,r(x,y)表反射分量4.5同态滤波4.5同态滤波器同态滤波器但是,如果定义:照度-反射模型:不能直接对照度-反射的频率部分进行傅立叶变换,因为:那么或开发一种能同时进行灰度范围的压缩和对比度增强的频率处理4.5同态滤波器在空间域,令则4.5同态滤波器首先将照射分量和反射分量分开,然后同态滤波函数H(u,v)分别对两个分量进行操作处理过程:4.5同态滤波器同态滤波器H(u,v)以不同的方法影响傅立叶变换的高低频成分一个同态滤波函数的横截面1同时进行动态范围的压缩和对比度增强4.5同态滤波4.6傅立叶变换和频率域的介绍

二维傅立叶变换的基本性质:周期性和对称性周期性:共轭对称4.6傅立叶变换和频率域的介绍4.6傅立叶变换和频率域的介绍

二维傅立叶变换的基本性质:可分性其中4.6傅立叶变换和频率域的介绍

二维傅立叶变换的基本性质:卷积定理对于离散域的函数,定义为:在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的累积。4.6傅立叶变换和频率域的介绍卷积理论由两个函数和它们的傅立叶变换间的下述关系组成:大小为M×N的两个函数f(x,y)和h(x,y)的离散卷积表示为f(x,y)*h(x,y)4.6傅立叶变换和频率域的介绍f(m)h(m)h(-m)h(x-m)f(x)*h(x)采用DFT可以在频率域进行卷积运算,但函数被看成周期函数,从而会引起错误。傅立叶变换计算范围傅立叶变换计算范围4.6傅立叶变换和频率域的介绍在空间域延拓的低通滤波器用延拓滤波的结果4.6傅立叶变换和频率域的介绍一维函数的相关256×25638×42293×297作业题1、近似一个离散导数的基本方法是对

f(x+1,y)-f(x,y)取差分。试找到空域一阶微分滤波器传递函数在频域中进行等价的操作H(u,v);答案答:已知空域滤波器在x方向的差分描述,则可写出y方向的差分描述f(x,y+1)-f(x,y) 则空域一阶微分滤波器可写为: g(x,y)=f(x+1,y)-f(x,y)+f(x,y+1)-f(x,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论