高中物理选修3-5知识点整理及高中物理选修3-5知识点总结_第1页
高中物理选修3-5知识点整理及高中物理选修3-5知识点总结_第2页
高中物理选修3-5知识点整理及高中物理选修3-5知识点总结_第3页
高中物理选修3-5知识点整理及高中物理选修3-5知识点总结_第4页
高中物理选修3-5知识点整理及高中物理选修3-5知识点总结_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE14高中物理选修3-5知识点1、普朗克量子假说1.创立标志:1900年普朗克在德国的《物理年刊》发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。3.量子论的发展①1905年,爱因斯坦将量子概念推广到光的传播中,提出了光量子论。②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。③到1925年左右,量子力学最终建立。4.实验规律:1)随着温度的升高,黑体的辐射强度都有增加;2)随着温度的升高,辐射强度的极大值向波长较短方向移动。2、光电效应1、光电效应⑴光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。⑵光电效应的实验规律:装置:如右图。①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。④金属受到光照,光电子的发射一般不超过10-9秒。2、光子说⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量.⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。即:.(其中是电磁波的频率,h为普朗克恒量:h=6.63×10-343、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。4.光电效应方程:(Ek是光电子的最大初动能,当Ek=0时,c为极限频率,c=.)3、光的波粒二象性实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满则下列关系:从光子的概念上看,光波是一种概率波.4、原子核式结构模型1、电子的发现和汤姆生的原子模型:⑴电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。⑵汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。2、粒子散射实验和原子核结构模型⑴粒子散射实验:1909年,卢瑟福及助手盖革和马斯顿完成的.现象:a.绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。b.有少数粒子发生较大角度的偏转c.有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。3,1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。5、氢原子光谱1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:n=3,4,5,…6、原子的能级⑵玻尔理论 ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。 ②跃迁假设:原子从一个定态(设能量为Em)跃迁到另一定态(设能量为En)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=Em-En ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。 7、原子核的组成1、天然放射现象⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。射线种类射线组成性质电离作用贯穿能力射线氦核组成的粒子流很强很弱射线高速电子流较强较强射线高频光子很弱很强2、原子核的组成原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数8、原子核的衰变 ⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 衰变类型衰变方程衰变规律衰变新核衰变新核 在衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即:.辐射伴随着衰变和衰变产生,这时放射性物质发出的射线中就会同时具有、和三种射线。 放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。9、放射性的应用与防护1934年,约里奥—居里夫妇发现经过α粒子轰击的铝片中含有放射性磷,即:10、核反应方程⑴卢瑟福用α粒子轰击氦核打出质子:⑵贝克勒耳和居里夫人发现天然放射现象:α衰变:β衰变:⑶查德威克用α粒子轰击铍核打出中子:⑷居里夫人发现正电子:⑸轻核聚变:⑹重核裂变:2.熟记一些粒子的符号α粒子()、质子()、中子()、电子()、氘核()、氚核()3.注意在核反应方程式中,质量数和电荷数是守恒的。11、重核裂变核聚变 释放核能的途径——裂变和聚变 ⑴裂变反应: ①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。 例如: ②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。 链式反应的条件:临界体积,极高的温度. ③裂变时平均每个核子放能约200Mev能量 1kg全部裂变放出的能量相当于2800吨煤完全燃烧放出能量! ⑵聚变反应: ①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。 例如: ②一个氘核与一个氚核结合成一个氦核时(同时放出一个中子),释放出17.6MeV的能量,平均每个核子放出的能量3MeV以上。比列变反应中平均每个核子放出的能量大3~4倍。 ③聚变反应的条件;几百万摄氏度的高温。高二(3233)班选修3-5总结一,动量定理的理解与应用1.容易混淆的几个物理量的区别(1)动量与冲量的区别:名称内容大小矢量性方向瞬时与过程相对性与绝对性联系动量p=mv矢量与v同向瞬时量相对性与参照物选择有关动量与冲量无因果关系冲量I=Ft矢量与F同向过程量绝对性与参照物选择无关(2)动量、动量变化量、动量变化率的区别:名称内容大小矢量性方向与其他的联系动量p=mv矢量与v同向—动量变化量Δp=mvt-mv0矢量与合力同向Δp=F合·t动量变化率eq\f(Δp,Δt)矢量与合力同向eq\f(Δp,Δt)=F合2.动量定理的应用(1)应用I=Δp求变力的冲量。如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化。曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。(3)用动量定理解释现象。用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。分析问题时,要把哪个量一定、哪个量变化搞清楚。(4)处理连续流体问题(变质量问题)。通常选取流体为研究对象,对流体应用动量定理列式求解。3.应用动量定理解题的步骤(1)选取研究对象。(2)确定所研究的物理过程及其始、末状态。(3)分析研究对象在所研究的物理过程中的受力情况。(4)规定正方向,根据动量定理列方程式。(5)解方程,统一单位,求解结果。4.动量守恒定律与机械能守恒定律的比较项目动量守恒定律机械能守恒定律守恒条件不受外力或所受合外力为零只有重力和弹力做功一般表达式p1+p2=p1′+p2′Ek1+Ep1=Ek2+Ep2标矢性矢量式标量式守恒条件的理解外力总冲量为零,系统总动量不变只发生势能和动能相互转化。可以有重力和弹力以外的力作用,但必须是不做功注意事项应选取正方向选取零势能面系统动量成立的条件:①系统(或某方向)不受外力作用时,系统(或某方向)动量守恒;②系统(或某方向)受外力但所受外力之和为零,则系统(或某方向)动量守恒;③系统(或某方向)所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统(或某方向)的动量可看成近似守恒;④系统总的来看不符合以上三条中的任意一条,则系统的总动量不守恒。但是,若系统在某一方向上符合以上三条中的某一条,则系统在该方向上动量守恒。一、黑体辐射(了解)与能量子1.一切物体都在辐射电磁波,这种辐射与物体的温度有关,叫热辐射。2.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体叫黑体。3.黑体辐射的实验规律①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.a.随着温度的升高,各种波长的辐射强度都增加.b.随着温度的升高,辐射强度的极大值向波长较短的方向移动.4.★★★普朗克能量子:带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.爱因斯坦光子说:空间传播的光本身就是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=hν。二、光电效应规律(1)每种金属都有一个极限频率.(2)光电流的强度与入射光的强度成正比.(3)光照射到金属表面时,光电子的发射几乎是瞬时的.(4)光子的最大初动能与入射光的强度无关,随入射光的频率增大而增大.理解:(1)光照强度(单色光)光子数光电子数饱和光电流(2)光子频率ν光子能量ε=hν爱因斯坦光电效应方程(密立根验证)Ek=hν-W0遏制电压Uce=Ek三、光的波粒二象性与物质波光电效应是指物体在光的照射下发射出电子的现象,发射出的电子称为光电子。用X射线照射物体时,一部分散射出来的X射线的波长会变长,这个现象称为康普顿效应1.光的干涉、衍射、偏振现象证明光具有波动性.爱因斯坦光电效应(光子有能量)康普顿效应(光子有动量和能量)说明光具有粒子性.光的本性:光既具有波动性,又具有粒子性,称为光的波粒二象性.2.光波是概率波.大量的、频率低的粒子波动性明显(注意有粒子性,只是不明显)3.德布罗意物质波(电子衍射证实):任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=eq\f(h,p),p为运动物体的动量,h为普朗克常量.()原子结构1.英国物理学家汤姆孙根据阴极射线在电场和磁场中的偏转情况,判定其为电子,并求出了电子的比荷。密立根通过油滴实验测出了电子电荷,并发现电荷是量子化的。2.卢瑟福α粒子散射实验:说明原子具有核式结构。绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来。.3.卢瑟福提出原子核式结构模型二、玻尔原子结构假说(是科学假说、类似还有安培分子电流假说)1.定态(能量量子化)2.轨道量子化3.跃迁条件:4.氢原子的能级公式:En=eq\f(1,n2)E1(n=1,2,3,…),其中E1为基态能量5.对原子跃迁和电离理解:跃迁:原子从低能级(高能级)E初向高能级(低能级)E末跃迁,只吸收(辐射)hν=E末-E初的能级差能量光子.可以吸收EkE末-E初的能级差能量的电子。基态电离:基态的氢原子吸收大于等于13.6eV能量的光子或电子后使氢原子电离。6.一个处于量子数为n的激发态的氢原子,最多可以辐射n-1中不同频率的光子,一群处于量子数为n的激发态的氢原子,最多可以辐射种不同频率的光子。7.氢原子的能量(类比天体模型):E总=EK+EP,当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子总能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子总能量增大.8.波尔模型的局限:成功之处为将量子观点引入原子领域,提出定态和跃迁。不足之处为保留了经典粒子的观念,仍把电子的运动看做经典力学描述下的轨道运动。原子核部分1.法国物理学家贝克勒尔发现天然放射现象,说明原子核还具有复杂的结构.居里夫妇发现放射性元素钋(Po)和镭(Ra)。2.原子核由中子和质子组成,质子和中子统称为核子.X元素原子核的符号为eq\o\al(A,Z)X,其中A表示质量数,Z表示核电荷数.种类组成电荷量质量贯穿本领电离α射线2e4mp最弱很强β射线-eeq\f(mp,1836)较强较弱γ射线光子(电磁波)0静止质量为零最强很弱3.原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.α衰变:eq\o\al(A,Z)X→eq\o\al(A-4,Z-2)Y+eq\o\al(4,2)Heα衰变的实质:2eq\o\al(1,1)H+2eq\o\al(1,0)n→eq\o\al(4,2)Heβ衰变:eq\o\al(A,Z)X→eq\o\al(A,Z+1)Y+eq\o\al(0,-1)eβ衰变的实质:1eq\s\do2(\d\ba4(0))n→0eq\s\do2(\d\ba7(-1))e+1eq\s\do2(\d\ba4(1))Hγ射线是α或β衰变后产生的新核能级跃迁辐射出来。4.半衰期:放射性元素的原子核有半数发生衰变所需的时间.①半衰期概念适用于大量核衰变(少数个别的核衰变时,谈半衰期无意义)②半衰期由核的性质来决定,与该元素的物理性质(状态、压强、温度、密度等)化学性质或存在形式均无关③N=N0(1/2)t/τ,m=m0(1/2)t/τ,I=I0(1/2)t/τI——单位时间内衰变的次数,τ——半衰期N0、m0、I0为最初量,N、m、I为t时间后剩下未衰变量衰变次数的方法:先由质量数的改变确定α衰变的次数,然后再确定β衰变的次数5.核力:组成原子核的核子之间有很强的相互作用力,使核子能克服库仑力而紧密地结合在一起,这种力称为核力.其特点为:(1)核力是强相互作用的一种表现,在原子核的尺度内,核力比库仑力大得多.(2)核力是短程力,作用范围在1.5×10-15m之内.(3)每个核子只跟相邻的核子发生核力作用,这种性质称为核力的饱和性.6.原子核是核子结合在一起构成的,要把它们分开,需要能量,叫原子核的结合能.结合能与核子数之比称比结合能,比结合能越大,原子核中核子结合越牢固,原子核越稳定7.质量亏损:原子核的质量小于组成它的核子的质量之和,这个现象叫做质量亏损.8.中等大小的核的比结合能最大(平均每个核子的质量亏损最大),这些核最稳当。9.爱因斯坦质能方程为E=mc2,若核反应中的质量亏损为Δm,释放的核能ΔE=Δmc2.10.重核裂变和轻核聚变过程中都有质量亏损,释放出核能。11.慢化剂:石墨、重水、轻水(普通水)。镉棒(控制棒)控制链式反应的速度。12.氢弹、太阳内部发生的是热核反应(聚变)。原子弹、核电站等(重核裂变)13放射性同位素及其应用和防护(1)工业部门使用射线测厚度——利用γ射线的穿透特性;(2)烟雾报警器的使用——利用射线的电离作用,增加烟雾导电离子浓度;(3)农业应用——γ射线使种子的遗传基因发生变异,杀死腐败细菌、抑制发芽等;(4)做示踪原子——利用放射性同位素与非放射性同位素有相同的化学性质.常见粒子符号:α粒子(4eq\s\do2(\d\ba4(2))He)、氚核(3eq\s\do2(\d\ba4(1))H)、氘核(2eq\s\do2(\d\ba4(1))H)、质子(1eq\s\do2(\d\ba4(1))H)、中子(1eq\s\do2(\d\ba4(0))n)、电子(0eq\s\do2(\d\ba7(-1))e)、正电子(0eq\s\do2(\d\ba4(1))e)等15.应用质能方程解题的流程图(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论