下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE新课标下初中数学建模的常见类型汕头市澄海溪南中学陈耀盛全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。一、建立“方程(组)”模型现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决例1(2007年深圳市中考试题)A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x公里,则乙工程队每周铺设管道(x+1)公里。依题意得:解得x1=2,x2=-3经检验x1=2,x2=-3都是原方程的根。但x2=-3不符合题意,舍去。∴x+1=3答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。二、建立“不等式(组)”模型现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。例2(2007年茂名市中考试题)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:品名厂家批发价(元/只)商场零价(元/只)篮球130160排球100120(1)该采购员最多可购进篮球多少只?(2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?解:(1)该采购员最多可购进篮球x只,则排球为(100-x)只,依题意得:130x+100(100-x)≤11815解得x≤60.5∵x是正整数,∴x=60答:购进篮球和排球共100只时,该采购员最多可购进篮球60只。(2)该采购员至少要购进篮球x只,则排球为(100-x)只,依题意得:30x+20(100-x)≥2580解得x≥58由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球平均每天销售40只,商场可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)答:采购员至少要购进篮球58只,该商场最多可盈利2600元。三、建立“函数”模型函数反映了事物间的广泛联系,揭示了现实世界众多的数量关系及运动规律。现实生活中,诸如最大获利、用料价造、最佳投资、最小成本、方案最优化问题,常可建立函数模型求解。例3(2007年贵州贵阳市中考试题)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式。(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式。(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?解:(1)y=90-3(x-50)化简,得y=-3x+240(2)w=(x-40)(-3x+240)=-3x2+360x-9600(3)w=-3x2+360x-9600=-3(x-60)2+1125∵a=-3<0∴抛物线开口向下当x=60时,w有最大值,又x<60,w随x的增大而增大,∴当x=55时,w的最大值为1125元,∴当每箱苹果的销售价为55元时,可以获得最大利润1125元的最大利润四、建立“几何”模型几何与人类生活和实际密切相关,诸如测量、航海、建筑、工程定位、道路拱桥设计等涉及一定图形的性质时,常需建立“几何模型,把实际问题转化为几何问题加以解决例4(2007年广西壮族自治区南宁市中考试题)如图点P表示广场上的一盏照明灯。QMPQMPAO4.5米B小敏灯柱小丽55°(2)若小丽到灯柱MO的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离;结果精确到0.1米;参考数据:tan55
°≈1.428,sin55°≈0.819,cos55°≈0.574。解:(1)如图,线段AC是小敏的影子。QEDFMPCAO4.5米B小敏灯柱小丽55°(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥QEDFMPCAO4.5米B小敏灯柱小丽55°∵tan55°=∴PD=3tan55°≈4.3(米)∵DF=QB=1.6米∴PF=PD+DF=4.3+1.6=5.9(米)。答:照明灯到地面的距离为5.9米。五、建立“统计”模型统计知识在自然科学、经济、人文、管理、工程技术等众多领域有着越来越多的应用。诸如公司招聘、人口统计、各类投标选举等问题,常要将实际问题转化为“统计”模型,利用有关统计知识加以解决。频数(人)180频数(人)1801206015.518.521.524.527.530.5分数(分)(1)在这个问题中,总体是,样本容量为。(2)第四小组的频率为,请补全频数分布直方图。(3)被抽取的样本的中位数落在第小组内。频数(人)1801206015.518.521.524.527.530.5分数(分)(4)若成绩在24分以上的为“优秀频数(人)1801206015.518.521.524.527.530.5分数(分)解:(1)8万名初中毕业生的体育升学考试成绩,=500。(2)0.26,补图如图所示。(3)三.(4)由样本知优秀率为100%=28%∴估计8万名初中毕业生的体育升学成绩优秀的人数为28%×80000=22400(人)。六、建立“概率”模型概率在社会生活及科学领域中用途非常广泛,诸如游戏公平问题、彩票中奖问题、预测球队胜负等问题,常可建立概率模型求解。例6(2007年辽宁省中考试题)四张质地相同的卡片如图所示。将卡片洗匀后,背面朝上放置在桌面上。游戏规则:游戏规则:随机抽取一张卡片,记下数字放回,洗匀后再取一张,将抽取的第一张、第二张卡片上的数字分别作为十位数字和个位数字,若组成的二位数不超过32,则小贝胜,反之则小晶胜.2632求随机抽取一张卡片,恰好得到数字2的概率小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图。你认为这个游戏公平吗?请用列表法或画树状图法说明理由。若认为不公平,请你修改法则,使游戏变得公平。解:(1)P(抽到2)=根据题意可列表2236222222326222222326332323336662626366画树状图如下:223622362236223622362222第一次抛第二次抛从表(或树状图)中可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省驻马店市正阳县校联考2024-2025学年九年级上学期12月月考语文试题(无答案)
- 2024-2025学年高一【数学(人教A版)】正弦函数、余弦函数的性质应用-教学设计
- 年终工作总结
- 安徽省天长市2024年疾控中心事业单位招聘招录108人管理单位遴选500题王牌题库带答案
- 计算机硬盘基础知识
- 初中英语语法指导之现在进行时课件
- 《班组长能力提升》课件
- 应急办重大危险源评估课件
- 感恩节主题班会课件-感恩世界
- 《与客户成交技巧》课件
- 人工智能法学前沿理论与实证研究
- 《合同交底范本》课件
- 驾驶员心理健康教育培训课件
- 教科版科学四年级上册全册教案教学设计
- 润滑油物流行业分析
- 传染病的全球监测与控制
- 部编版小学道德与法治五年级上册单元复习课件(全册)
- 动画专业大学生职业生涯规划书
- 幼儿园食谱播报
- 女性内分泌测定
- 全国导游考试(面试)200问及面试内容(附答案)
评论
0/150
提交评论