2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届衡水市重点中学九年级数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,将(其中∠B=33°,∠C=90°)绕点按顺时针方向旋转到的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. B. C. D.2.二次函数经过平移后得到二次函数,则平移方法可为()A.向左平移1个单位,向上平移1个单位B.向左平移1个单位,向下平移1个单位C.向右平移1个单位,向下平移1个单位D.向右平移1个单位,向上平移1个单位3.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.4.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70° B.65° C.55° D.45°5.若点P(﹣m,﹣3)在第四象限,则m满足()A.m>3 B.0<m≤3 C.m<0 D.m<0或m>36.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A. B. C. D.7.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A. B.C. D.8.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限9.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有()A.1个 B.2个 C.3个 D.0个10.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.12.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.13.如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为_______cm.14.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.15.不等式组的解集是_____________.16.不等式组的整数解的和是__________.17.计算的结果是_____.18.如图,在直角坐标系中,正方形ABCD的边BC在x轴上,其中点A的坐标为(1,2),正方形EFGH的边FG在x轴上,且H的坐标为(9,4),则正方形ABCD与正方形EFGH的位似中心的坐标是_____.三、解答题(共66分)19.(10分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.20.(6分)在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.(1)随机地从箱子里取出一个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.21.(6分)我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如=3+.这种方法我们称为“分离常数法”.(1)如果=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=的图象是由哪个反比例函数的图象经过怎样的变换得到?22.(8分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.23.(8分)化简求值:,其中24.(8分)如图,在中,,是绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.求旋转角的大小;若,,求BE的长.25.(10分)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.26.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据直角三角形两锐角互余求出,然后求出,再根据旋转的性质对应边的夹角即为旋转角.【详解】解:,,,点、、在同一条直线上,,旋转角等于.故选:D.【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.2、D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x加减(左加右减),上下平移y加减(下加上减),据此便能得出答案.【详解】由得平移方法可为向右平移1个单位,向上平移1个单位故答案为:D.【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.3、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.4、C【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,

∴∠C=∠O=55°.

故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.5、C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【详解】解:根据第四象限的点的横坐标是正数,可得﹣m>1,解得m<1.故选:C.【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.6、C【分析】根据左视图即从物体的左面观察得得到的视图,进而得出答案.【详解】如图所示,该几何体的左视图是:.故选C.【点睛】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.7、B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.8、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.9、B【分析】根据图上给出的条件是与x轴交于(1,0),叫我们加个条件使对称轴是,意思就是抛物线的对称轴是是题目的已知条件,这样可以求出的值,然后即可判断题目给出三人的判断是否正确.【详解】∵抛物线过(1,0),对称轴是,∴解得,

∴抛物线的解析式为,

当时,,所以小华正确;∵,所以小明正确;

抛物线被轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y轴或,此时答案不唯一,所以小颖错误.综上,小华、小明正确,

故选:B.【点睛】本题考查了抛物线与轴的交点以及待定系数法求二次函数解析式,利用待定系数法求出抛物线的解析式是解题的关键.10、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,符合此定义的只有选项B.故选B.二、填空题(每小题3分,共24分)11、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.12、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,知道白球、黄球的频率后,可以得出黄球概率,即可得出黄球的个数.【详解】解:∵从盒子中摸出红球的频率是15%,摸出白球的频率是45%,∴得到黄球的概率为:1﹣15%﹣45%=40%,则口袋黄小球有:60×40%=1个.故答案为:1.【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率,解决本题的关键是要熟练掌握频率,概率的关系.13、16【解析】∵AE,AD,BC分别切O于点E.

D和点F,∴AD=AC,DB=BF,CE=CF,∴AB+BC+AC=AB+BF+CF+AC=AB+BD+CE+AC=AD+AE=2AD=16cm,故答案为:16.14、5≤d≤1.【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可.【详解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非负数,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴对称轴为直线a=0,∴a=0时,最小值=5,a=2时,最大值=22+5=1,∴5≤d≤1.故答案为:5≤d≤1.【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式.15、【分析】根据解一元一次不等式组的方法求解即可;【详解】解:由不等式①得,,由不等式②得,x<4,故不等式组的解集是:;故答案为:.【点睛】本题主要考查了一元一次不等式组,掌握一元一次不等式是解题的关键.16、【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解①得:x<1;解②得:x>−3;∴原不等式组的解集为−3<x<1;∴原不等式组的所有整数解为−2、−1、0∴整数解的和是:-2-1+0=-3.故答案为:-3.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.17、4【分析】直接利用二次根式的性质化简得出答案.【详解】解:原式.故答案为【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18、(﹣3,0)或(,)【分析】连接HD并延长交x轴于点P,根据正方形的性质求出点D的坐标为(3,2),证明△PCD∽△PGH,根据相似三角形的性质求出OP,另一种情况,连接CE、DF交于点P,根据待定系数法分别求出直线DF解析式和直线CE解析式,求出两直线交点,得到答案.【详解】解:连接HD并延长交x轴于点P,则点P为位似中心,∵四边形ABCD为正方形,点A的坐标为(1,2),∴点D的坐标为(3,2),∵DC//HG,∴△PCD∽△PGH,∴,即,解得,OP=3,∴正方形ABCD与正方形EFGH的位似中心的坐标是(﹣3,0),连接CE、DF交于点P,由题意得C(3,0),E(5,4),D(3,2),F(5,0),求出直线DF解析式为:y=﹣x+5,直线CE解析式为:y=2x﹣6,解得直线DF,CE的交点P为(,),所以正方形ABCD与正方形EFGH的位似中心的坐标是(,),故答案为:(﹣3,0)或(,).【点睛】本题考查的是位似变换的概念和性质、相似三角形的判定和性质,位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.三、解答题(共66分)19、.【分析】利用树状图得出所有可能的结果数和甲组抽到小区,同时乙组抽到小区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如下:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率=.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握用树状图或列表法求解的方法是解题的关键.20、(1);(2)【分析】(1)已知由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,所以可利用概率公式求解即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.【详解】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:.考点:用列表法或树状图法求概率.21、(1)a=-4;(2)m=4或m=-2或m=2或m=0;(3)y=.【解析】(1)依据定义进行判断即可;(2)首先将原式变形为-3-,然后依据m-1能够被3整数列方程求解即可;(3)先将函数y=化为y=+3,再结合平移的性质即可得出结论.【详解】(1)∵=1+,∴a=-4.(2)=-3-,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y==3+,∴将y=的图象向右移动2个单位长度得到y=的图象,再向上移动3个单位长度得到y-3=,即y=.【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质和找出图象平移的性质是解题的关键.22、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线.23、;.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,现时利用除法法则变形,约分得到最简结果,再把x的值代入计算即可.【详解】===;当时,原式=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1)90°;(2)1.【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.

(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.【详解】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=125、(1)证明见解析;(2).【解析】试题分析:(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论