2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省市深圳市龙岗区南湾学校九年级数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.两个相似三角形,其面积比为16:9,则其相似比为()A.16:9 B.4:3 C.9:16 D.3:42.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是

A. B. C. D.3.如图所示的几何体的主视图为()A. B. C. D.4.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.5.对于反比例函数,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小6.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二7.将抛物线y=(x﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣38.计算的结果等于()A.-6 B.6 C.-9 D.99.如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明△ABC~△EDC的是()A.∠A=∠E B. C.AB∥DE D.10.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.二、填空题(每小题3分,共24分)11.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.12.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).13.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.14.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm215.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.16.方程的根是__________.17.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,…按此做法进行下去,其中弧的长为_______.18.已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.三、解答题(共66分)19.(10分)若方程(m-2)+(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.20.(6分)综合与探究如图1,平面直角坐标系中,直线分别与轴、轴交于点,.双曲线与直线交于点.(1)求的值;(2)在图1中以线段为边作矩形,使顶点在第一象限、顶点在轴负半轴上.线段交轴于点.直接写出点,,的坐标;(3)如图2,在(2)题的条件下,已知点是双曲线上的一个动点,过点作轴的平行线分别交线段,于点,.请从下列,两组题中任选一组题作答.我选择组题.A.①当四边形的面积为时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.B.①当四边形成为菱形时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.21.(6分)如图,在中,,,点在的内部,经过,两点,交于点,连接并延长交于点,以,为邻边作.(1)判断与的位置关系,并说明理由.(2)若点是的中点,的半径为2,求的长.22.(8分)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=–1时,y=1.求x=-时,y的值.23.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)画出关于轴的对称图形;(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.24.(8分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆,箱长,拉杆的长度都相等,在上,在上,支杆,请根据以上信息,解决下列向题.求的长度(结果保留根号);求拉杆端点到水平滑杆的距离(结果保留根号).25.(10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.26.(10分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方.【详解】根据题意得:=.即这两个相似多边形的相似比为4:1.故选:B.【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.2、D【分析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.②时,由图像可知此时,即,故②正确.③由对称轴,可得,所以错误,故③错误;④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题.3、B【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.4、A【分析】画树状图(用、、分别表示“图书馆、博物馆、科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】画树状图为:(用分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.5、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=(x-2)2-8向左平移1个单位所得直线的解析式为:y=(x+1)2-8;

由“上加下减”的原则可知,将抛物线y=(x-5)2-8向上平移5个单位所得抛物线的解析式为:y=(x+1)2-1.

故选:D.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、D【分析】根据有理数乘方运算的法则计算即可.【详解】解:,故选:D.【点睛】本题考查了有理数的乘方,掌握运算法则是解题的关键.9、D【分析】利用相似三角形的判定依次判断即可求解.【详解】A、若∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项A不符合题意;B、若,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项B不符合题意;C、若AB∥DE,可得∠A=∠E,且∠ACB=∠DCE,则可证△ABC~△EDC,故选项C不符合题意;D、若,且∠ACB=∠DCE,则不能证明△ABC~△EDC,故选项D符合题意;故选:D.【点睛】本题考查相似三角形的判定,熟知相似三角形的判定方法是解题的关键,判定时需注意找对对应线段.10、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.二、填空题(每小题3分,共24分)11、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.12、增大.【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大,故答案为增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.13、(47,)【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【详解】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sim60°.OC1=,横坐标为cos60°.OC1=,∴C1,∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…∴C2的纵坐标为:sin60°A1C2=,代入y求得横坐标为2,∴C2(2,),∴C3的纵坐标为:sin60°A2C3=,代入y求得横坐标为5,∴C3(5,),∴C4(11,),C5(23,),∴C6(47,);故答案为(47,).【点睛】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.14、60π【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.15、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,

∴-2+4=-m,-2×4=n,

解得:m=-2,n=-8,

∴m+n=-1,

故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.16、【分析】由题意根据直接开平方法的步骤求出x的解即可.【详解】解:∵,∴x=±2,∴.故答案为:.【点睛】本题考查解一元二次方程-直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.17、.【分析】连接,,,易求得垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【详解】连接,,

是上的点,

直线l解析式为,

为等腰直角三角形,即轴,

同理,垂直于x轴,

为圆的周长,

以为圆心,为半径画圆,交x轴正半轴于点,以为圆心,为半径画圆,交x轴正半轴于点,以此类推,

当时,

故答案为【点睛】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键.18、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案为1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.三、解答题(共66分)19、-4【分析】根据一元二次方程的定义列式求出m的值,然后代入代数式进行计算即可得解.【详解】解:根据题意,得m2-2=2且m-2≠0,解得m=±2且m≠2,所以m=-2,m2+2m-4=(-2)2+2×(-2)-4=4-4-4=-4.【点睛】本题主要考查一元二次方程的定义,熟悉掌握是关键.20、(1);(2),,;(3)A.①,②,,;B.①,②,,.【分析】(1)根据点在的图象上,求得的值,从而求得的值;(2)点在直线上易求得点的坐标,证得可求得点的坐标,证得即可求得点的坐标;(3)A.①作轴,利用平行四边的面积公式先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.①作轴,根据菱形的性质结合相似三角形的性质先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;【详解】(1)在的图象上,,,∴点的坐标是,在的图象上,∴,∴;(2)对于一次函数,当时,,∴点的坐标是,当时,,∴点的坐标是,∴,,在矩形中,,,∴,∴,,,,∴点的坐标是,矩形ABCD中,AB∥DG,∴∴点的坐标是,故点,,的坐标分别是:,,;(3)A:①过点作轴交轴于点,轴,,四边形为平行四边形,的纵坐标为,∴,∴,∴点的坐标是,②当时,如图1,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图2,过点作⊥轴于,直线交轴于,∵,∴,,∴,∴,,∵点的坐标是,点的坐标是,∴,,,点的坐标是,当时,如图3,点与点关于轴对称,由轴对称的性质可得:点的坐标是;B:①过点作轴于点,,,∴,,,,四边形为菱形,,∵轴,∴ME∥BO,∴,,,,的纵坐标为,∴,∴,∴点的坐标是;②当时,如图4,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图5,过点作⊥轴于,直线交轴于,∵,∴,,∴,∴,,∵点的坐标是,点的坐标是,,∴,,,点的坐标是,当时,如图6,点与点关于轴对称,由轴对称的性质可得:点的坐标是;【点睛】本题考查了反比例函数与一次函数的综合应用,运用待定系数法求反比例函数与一次函数的解析式,掌握函数图象上点的坐标特征和矩形、菱形的性质;会运用三角形全等的知识解决线段相等的问题;理解坐标与图形性质,综合性强,有一定的难度.21、(1)是的切线;理由见解析;(2)的长.【分析】(1)连接,求得,根据圆周角定理得到,根据平行四边形的性质得到,得到,推出,于是得到结论;(2)连接,由点是的中点,得到,求得,根据弧长公式即可得到结论.【详解】(1)是的切线;理由:连接,,,,,四边形是平行四边形,,,,,是的切线;(2)连接,点是的中点,,,,的长.【点睛】本题考查了直线与圆的位置关系,圆周角定理,平行四边形的性质,正确的识别图形是解题的关键.22、-【详解】试题分析:设y1=k1x2,,所以把x=1,y=3,x=-1,y=1分别代入,然后解方程组后可得出y与x的函数关系式,然后把x=代入即可求出y的值.试题解析:因为y1与x2成正比例,y2与x成反比例,所以设y1=k1x2,,所以,把x=1,y=3,x=-1,y=1分别代入上式得:∴,当x=-时,y=2×(-)2+=-2=-考点:1.函数关系式2.求函数值.23、(1)见解析;(2)见解析,【分析】(1)根据图形对称的性质,关于轴对称,相等,互为相反数.(2)根据扇形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论