2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题含解析_第1页
2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题含解析_第2页
2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题含解析_第3页
2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题含解析_第4页
2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省建瓯市芝华中学九年级数学第一学期期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,的直径,弦于.若,则的长是()A. B. C. D.2.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.3.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米4.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是()A.当a=1时,函数图像过点(-1,1)B.当a=-2时,函数图像与x轴没有交点C.当a,则当x1时,y随x的增大而减小D.当a,则当x1时,y随x的增大而增大5.己知正六边形的边长为2,则它的内切圆的半径为(

)A.1 B. C.2 D.26.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.37.如图,是的直径,弦于点,如果,,那么线段的长为()A.6 B.8 C.10 D.128.若二次函数的图象经过点P

(-1,2),则该图象必经过点()A.(1,2) B.(-1,-2) C.(-2,1) D.(2,-1)9.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.210.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.11.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.12.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD的最大值为()A. B.2 C. D.二、填空题(每题4分,共24分)13.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.14.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.15.抛物线y=x2–6x+5的顶点坐标为__________.16.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.17.已知锐角α,满足tanα=2,则sinα=_____.18.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.三、解答题(共78分)19.(8分)综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将绕点逆时针旋转,得到,连接,求出的度数.思路二:将绕点顺时针旋转,得到,连接,求出的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点是正方形外一点,,,,求的度数.拓展应用(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.20.(8分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.21.(8分)如图1,已知平行四边形,是的角平分线,交于点.(1)求证:.(2)如图2所示,点是平行四边形的边所在直线上一点,若,且,,求的面积.22.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?23.(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.24.(10分)先化简,再求值的值,其中.25.(12分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.26.如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】先根据线段的比例、直径求出OC、OP的长,再利用勾股定理求出CP的长,然后根据垂径定理即可得.【详解】如图,连接OC直径在中,弦于故选:C.【点睛】本题考查了勾股定理、垂径定理等知识点,属于基础题型,掌握垂径定理是解题关键.2、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.3、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,

∴水平距离=20×=20米.

根据勾股定理可得背水面的坡长为40米.

故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.4、D【分析】根据二次函数的图象与性质逐项分析即可.【详解】y=ax2-2ax-1(a是常数且a≠0)A、当a=1时,y=x2−2x−1,令x=−1,则y=2,此项错误;B、当a=−2时,y=2x2+4x−1,对应的二次方程的根的判别式Δ=42−4×2×(−1)=24>0,则该函数的图象与x轴有两个不同的交点,此项错误;C、当a>0,y=ax2−2ax−1=a(x-1)2-a+1,则x≥1时,y随x的增大而增大,此项错误;D、当a<0时,y=ax2−2ax−1=a(x-1)2-a+1,则x≤1时,y随x的增大而增大,此项正确;故答案为:D.【点睛】本题考查了二次函数的图象与性质,掌握熟记图象特征与性质是解题关键.错因分析:较难题.失分原因可能是:①不会判断抛物线与x轴的交点情况;②不能画出拋物线的大致图象来判断增减性.5、B【解析】由题意得,∠AOB==60°,∴∠AOC=30°,∴OC=2⋅cos30°=2×=,故选B.6、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.7、A【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【详解】解:如图所示,连接OD.

∵弦CD⊥AB,AB为圆O的直径,

∴E为CD的中点,

又∵CD=16,

∴CE=DE=CD=8,

又∵OD=AB=10,

∵CD⊥AB,∴∠OED=90°,

在Rt△ODE中,DE=8,OD=10,

根据勾股定理得:OE==6,

则OE的长度为6,

故选:A.【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.8、A【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【详解】解:∵二次函数y=ax2的对称轴为y轴,

∴若图象经过点P(-1,2),

则该图象必经过点(1,2).

故选:A.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.9、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.10、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,

∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.11、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12、B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=AB=1,∴CD的最大值为1.故答案为:1.【点睛】本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.二、填空题(每题4分,共24分)13、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【详解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.14、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.15、(3,-4)【解析】分析:利用配方法得出二次函数顶点式形式,即可得出二次函数顶点坐标.详解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线顶点坐标为(3,﹣4).故答案为(3,﹣4).点睛:此题考查了二次函数的性质,求抛物线的顶点坐标可以先配方化为顶点式,也可以利用顶点坐标公式()来找抛物线的顶点坐标.16、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,17、【解析】分析:根据锐角三角函数的定义,可得答案.详解:如图,由tanα==2,得a=2b,由勾股定理,得:c==b,sinα===.故答案为.点睛:本题考查了锐角三角函数,利用锐角三角函数的定义解题的关键.18、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.三、解答题(共78分)19、(1)∠APB=135°,(2)∠APB=45°;(3).【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;

思路二、同思路一的方法即可得出结论;(2)将绕点逆时针旋转,得到,连接,然后同(1)的思路一的方法即可得出结论;(3)可先将△APB绕点A按逆时针方向旋转60°,得到△AP'C,根据旋转性质,角的计算可得到△APP'是等边三角形,再根据勾股定理,得到AP的长,最后根据三角形面积得到所求.【详解】解:(1)思路一,如图1,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,,∵,∴.又∵,∴,∴是直角三角形,且,∴;思路二、同思路一的方法.(2)如图2,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,.∵,∴.又∵,∴,∴是直角三角形,且,∴;(3)如图3,将△APB绕点A按逆时针方向旋转60°,得到△AP'C,

∴∠AP'C=∠APB=360°-90°-120°=150°.∵AP=AP',∴△APP'是等边三角形,∴PP'=AP,∠AP'P=∠APP'=60°,∴∠PP'C=90°,∠P'PC=30°,∴,即.∵APC=90°,∴AP2+PC2=AC2,且,∴PC=2,∴,∴.【点睛】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,旋转的性质,全等三角形的性质,勾股定理及其逆定理,正确作出辅助线是解本题的关键.20、(1)50,补图见解析;(2)306人;(3).【分析】(1)根据统计图可以求得本次调查的人数以及发言为和的人数,从而可以将直方图补充完整;(2)根据统计图中的数据可以估计在这一天里发言次数不少于12次的人数;(3)根据题意可以求得发言次数为和的人数,从而可以画出树状图,得到所抽的两位代表恰好都是男士的概率.【详解】解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是,即所抽的两位代表恰好都是男士的概率是.【点睛】本题考查列表法与树状图法、总体、个体、样本、样本容量、频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.21、(1)证明见解析;(2)【分析】(1)根据角平分线的定义结合两直线平行,内错角相等可得,然后利用等角对等边证明即可;(2)先证得为等腰三角形,设,,利用三角形内角和定理以及平行线性质定理证得,再利用同底等高的两个三角形面积相等即可求得答案.【详解】(1)平分,,又四边形是平行四边形,,,,;(2),,,为等腰三角形,设,,,,又,,,,即为直角三角形,四边形是平行四边形,,∴.【点睛】本题考查了平行四边形的性质,角平分线的定义,三角形内角和定理,等角对等边的性质,同底等高的两个三角形面积相等,证得为直角三角形是正确解答(2)的关键.22、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【分析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.23、(1)答案见解析(2)54%(3)【解析】(1)根据各组频数之和等于总数可得分的人数,据此即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【详解】(1)70到80分的人数为人,补全频数分布直方图如下:(2)本次测试的优秀率是;(3)设小明和小强分别为、,另外两名学生为:、,则所有的可能性为:、、、、、,所以小明与小强同时被选中的概率为.【点睛】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.24、;【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x,再代入即可.【详解】原式.当时,原式.【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握.25、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;(1)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x−1,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(1,0)与y轴交于点C(0,1)∴解之得∴这个二次函数的解析式为y=-x2+2x+1(2)解:如图,设D(t,-t2+2t+1),过点D作DH⊥x轴,垂足为H,则S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴当t=时,△ACD的面积有最大值此时-t2+2t+1=∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴点F的坐标为(0,−1).设直线AE的解析式为y=kx+b,将(0,−1),(1,0)代入y=kx+b得:解得∴直线AE的解析式为y=x−1,由解得或∴点E1的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论