版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年新疆维吾尔自治区七校联考数学九年级第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为的直径,弦,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为()A.12寸 B.13寸 C.24寸 D.26寸2.如图,在平行四边形中,为延长线上一点,且,连接交于,则△与△的周长之比为()A.9:4 B.4:9C.3:2 D.2:33.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④4.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.5.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.906.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.7.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20° B.25° C.40° D.50°8.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A. B. C. D.9.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣110.如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为()A.70° B.65° C.60° D.55°二、填空题(每小题3分,共24分)11.如图AC,BD是⊙O的两条直径,首位顺次连接A,B,C,D得到四边形ABCD,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.12.计算的结果是_______.13.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.14.如图,在平面直角坐标系中,点的坐标分别是,,若二次函数的图象过两点,且该函数图象的顶点为,其中,是整数,且,,则的值为__________.15.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.16.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.17.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.18.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________三、解答题(共66分)19.(10分)小尧用“描点法”画二次函数的图像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小尧算错了其中的一个y值,请你指出这个算错的y值所对应的x=;(2)在图中画出这个二次函数的图像;(3)当y≥5时,x的取值范围是.20.(6分)如图,在中,,以为直径作交于于于.求证:是中点;求证:是的切线21.(6分)某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,,,车杆与所成的,图1中、、三点共线,图2中的座板与地面保持平行.问变形前后两轴心的长度有没有发生变化?若不变,请写出的长度;若变化,请求出变化量?(参考数据:,,)22.(8分)有4张看上去无差别的卡片,上面分别写着1,2,3,4.(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.23.(8分)如图,抛物线y=﹣x2+4x+m﹣4(m为常数)与y轴交点为C,M(3,0)、N(0,﹣2)分别是x轴、y轴上的点.(1)求点C的坐标(用含m的代数式表示);(2)若抛物线与x轴有两个交点A、B,是否存在这样的m,使得线段AB=MN,若存在,求出m的值,若不存在,请说明理由;(3)若抛物线与线段MN有公共点,求m的取值范围.24.(8分)如图,中,,以为直径作,交于点,交于点.(1)求证:.(2)若,求的度数.25.(10分)如图,平行四边形中,,过点作于点,现将沿直线翻折至的位置,与交于点.(1)求证:;(2)若,,求的长.26.(10分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】连接AO,设直径CD的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE,最后根据勾股定理进一步求解即可.【详解】如图,连接AO,设直径CD的长为寸,则半径OA=OC=寸,∵CD为的直径,弦,垂足为E,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD长为26寸.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.2、C【分析】由题意可证△ADF∽△BEF可得△ADF与△BEF的周长之比=,由可得,即可求出△ADF与△BEF的周长之比.【详解】∵四边形ABCD是平行四边形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF与△BEF的周长之比=.故选:C.【点睛】本题考查了相似三角形的性质和判定,平行四边形的性质,利用相似三角形周长的比等于相似比求解是解本题的关键.3、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.4、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【点睛】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.5、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.6、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.7、B【解析】连接OA,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA,如图:∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8、A【分析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点睛】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、B【分析】连接OC、OD,利用圆心角、弧、弦的关系以及圆周角定理求得∠AOD=50°,然后根据的等腰三角形的性质以及三角形内角和定理即可求得∠DAE=65°.【详解】解:连接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故选:B.【点睛】本题考查了圆中弦,弧,圆心角之间的关系,圆周角定理和三角形内角和,解决本题的关键是正确理解题意,能够熟练掌握圆心角,弧,弦之间的关系.二、填空题(每小题3分,共24分)11、【分析】首先证明△BOC是等边三角形及△OBC≌△AOD(SAS),进而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S阴=2•S扇形OAD,再利用扇形的面积公式计算即可;【详解】解:∵AC是直径,
∴∠ABC=∠ADC=90°,
∵∠BAC=30°,AD=3,
∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,
∵OC=OB=OA=OD,
∴△OBC与△AOD是等边三角形,
∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中点,
∴S△AOD=S△DOC=S△BOC=S△AOB,
∴S阴=2•S扇形OAD=,故答案为:.【点睛】本题考查扇形的面积公式、解直角三角形、等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12、【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式====.故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.13、100゜【分析】根据圆周角定理,由∠ACB=130°,得到它所对的圆心角∠α=2∠ACB=260°,用360°-260°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案为100°.14、,【分析】先将A,B两点的坐标代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下两种情况:①a>0,画出示意图,可得出yM=0,1或2,进而求出a的值;②a<0时,根据示意图可得,yM=5,6或7,进而求出a的值;方法二:根据题意可知或7①,或7②,由①求出a的值,代入②中验证取舍从而可得出a的值.【详解】解:将A,B两点的坐标代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化为:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①当a>0时,开口向上,∵二次函数经过A,B两点,且顶点中,x,y均为整数,且,,画出示意图如图①,可得0≤yM≤2,∴yM=0,1或2,当yM=0时,解得a=,不满足xM为整数的条件,舍去;当yM=1时,解得a=1(a=不符合条件,舍去);当yM=2时,解得a=,符合条件.②a<0时,开口向下,画出示意图如图②,根据题中条件可得,5≤yM≤7,只有当yM=5,a=-时,当yM=6,a=-1时符合条件.综上所述,a的值为,.方法二:根据题意可得或7;或7③,∴当时,解得a=,不符合③,舍去;当时,解得a=,不符合③,舍去;当时,解得a=,符合③中条件;当时,解得a=1,符合③中条件;当时,解得a=-1,符合③中条件;当时,解得a=-,符合③中条件;当时,解得a=-,不符合③舍去;当时,解得a=-,不符合③舍去;综上可知a的值为:,.故答案为:,【点睛】本题主要考查二次函数的解析式、顶点坐标以及函数图像的整数点问题,掌握基本概念与性质是解题的关键.15、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.16、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,
在Rt△ABC中,BC==5,
∵AD是三角形的角平分线,
∴DC=DE,
∵S△ACD+S△ABD=S△ABC,
∴×5,
∴DE=1,
即点D到直线AB的距离等于1.
故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.17、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长18、【分析】根据题意可点G在以AB为直径的圆上,设圆心为H,当HGC在一条直线上时,CG的值最值,利用勾股定理求出CH的长,CG就能求出了.【详解】解:点的运动轨迹为以为直径的为圆心的圆弧。连结GH,CH,CG≥CH-GH,即CG=CH-GH时,也就是当三点共线时,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案为:【点睛】本题考查了矩形的性质、勾股定理、三角形三边的关系.CGH三点共线时CG最短是解决问题的关键.把动点转化成了定点,问题就迎刃而解了..三、解答题(共66分)19、(1)2;(2)详见解析;(3)或【分析】(1)由表格给出的信息可以看出,该函数的对称轴为直线x=-1,则x=-4与x=2时应取值相同.(2)将表格中的x,y值看作点的坐标,分别在坐标系中描出这几个点,用平滑曲线连接即可作出这个二次函数的图象;(3)根据抛物线的对称轴,开口方向,利用二次函数的对称性判断出x=-4或2时,y=5,然后写出y≥5时,x的取值范围即可.【详解】解:(1)从表格可以看出,当x=-2或x=0时,y=-3,
可以判断(-2,-3),(0,-3)是抛物线上的两个对称点,
(-1,-4)就是顶点,设抛物线顶点式y=a(x+1)2-4,
把(0,-3)代入解析式,-3=a-4,解得a=1,
所以,抛物线解析式为y=(x+1)2-4,
当x=-4时,y=(-4+1)2-4=5,
当x=2时,y=(2+1)2-4=5≠-5,
所以这个错算的y值所对应的x=2;(2)描点、连线,如图:(3)∵函数开口向上,当y=5时,x=-4或2,∴当y≥5时,由图像可得:x≤-4或x≥2.【点睛】本题考查用待定系数法求二次函数解析式、二次函数的性质、画函数图像、二次函数与不等式,解题的关键是正确分析表中的数据.20、(1)详见解析,(2)详见解析【分析】(1)连接AD,利用等腰三角形三线合一即可证明是中点;(2)连接OD,通过三角形中位线的性质得出,则有OD⊥DE,则可证明结论.【详解】(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)连接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.【点睛】本题主要考查等腰三角形三线合一和切线的判定,掌握等腰三角形三线合一和切线的判定方法是解题的关键.21、的长度发生了改变,减少了.【分析】根据图形的特点构造直角三角形利用三角函数求出变化前BC与变化后的BC长度即可求解.【详解】图1:作DF⊥BC于F点,∵∴BF=EF=BDcos≈30×=18∴BC=2BF+CE图2:作DF⊥BC于F点,由图1可知∠DE’F=53°,∴∠DE’C=180°-∠DE’F=127°∵DE∥BC,∴∠E’DE=∠DE’F=53°根据题意可知DE’=DE,CE’=CE,连接CD,∴△DCE≌△DCE’∴∠DEC=∠DE’C=127°∴∠ECB=360°-∠DEC-∠DE’C-∠E’DE=53°,作EG⊥BC于G点∴BC=BF+FG+GC=BDcos+DE+CE∠ECB30×+30+40×=76-72=4cm,答:的长度发生了改变,减少了.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的运用.22、(1);(2).【分析】(1)先列出一次性随机抽取2张卡片的所有可能的结果,再找出两张卡片上的数字之和为奇数的结果,最后利用概率公式计算即可;(2)先列出两次抽取卡片的所有可能的结果,再找出两次取出的卡片上的数字之和等于4的结果,最后利用概率公式计算即可;【详解】(1)由题意得:一次性随机抽取2张卡片的所有可能的结果有6种,即,它们每一种出现的可能性相等从中可看出,两张卡片上的数字之和为奇数的结果有4种,即故所求的概率为;(2)两次抽取卡片的所有可能的结果有16种,列表如下:第一次第二次12341234它们每一种出现的可能性相等从中可看出,两次取出的卡片上的数字之和等于4的结果有3种,即故所求的概率为.【点睛】本题考查了用列举法求概率,依据题意正确列举出事件的所有可能的结果是解题关键.23、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,即可求解;(3)联立抛物线与直线MN的表达式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【详解】(1)由题意得:点C的坐标为:(0,m﹣4);(1)存在,理由:令y=0,则x=1,则AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直线MN的解析式为yx﹣1.∵抛物线与线段MN有公共点,则方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【点睛】本题考查了二次函数综合运用,涉及到一次函数的性质、解不等式、一元二次方程等,其中(3),确定△≥0,且m﹣4≤﹣1是解答本题的难点.24、(1)证明见解析;(2)80°【分析】(1)连接AD,根据圆周角定理和等腰三角形的三线合一,可得,利用相等的圆周角所对的弧相等即可得证;(2)连接BE,利用同弧所对的圆周角相等可得,再利用等腰三角形的性质可求得利用圆周角定理即可求解.【详解】解:(1)连接AD,,∵为的直径,∴,即,∵在中,,∴,∴;(2)连接BE,,∵,∴,,∵,∴,∴的度数为.【点睛】本题考查圆周角定理,等腰三角形的性质,弧、弦、圆心角和圆周角之间的关系,熟练应用圆的基本性质定理是解题的关键.25、(1)见解析;(2)【分析】(1)根据平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论