




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省临沂市太平中学数学九年级第一学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下 B.抛物线过点(0,8)C.抛物线与x轴有两个交点 D.对称轴是直线x=32.如图,直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2 B.﹣6<x<0或x>2 C.x<﹣6或0<x<2 D.﹣6<x<23.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,8,9的中位数是6C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是24.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+25.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-36.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA7.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.508.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为()A. B. C. D.9.下列手机应用图标中,是中心对称图形的是()A. B. C. D.10.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是()A.4π B.1π C.π D.2π11.如图,已知,直线与直线相交于点,下列结论错误的是()A. B.C. D.12.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水二、填空题(每题4分,共24分)13.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______.14.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为____________.15.若函数是反比例函数,则________.16.如图所示,某河堤的横断面是梯形,,迎水坡长26米,且斜坡的坡度为,则河堤的高为米.17.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.18.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.三、解答题(共78分)19.(8分)解方程20.(8分)如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.21.(8分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.22.(10分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求的值;(2)求出小王一次拨对小李手机号的概率.23.(10分)如图,为的直径,切于点,交的延长线于点,且.(1)求的度数.(2)若的半径为2,求的长.24.(10分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.25.(12分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).(1)求点A的坐标.(2)求抛物线的表达式.(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.26.解方程:x2+4x﹣3=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据△的符号,可判断图像与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图像与y轴的交点坐标,利用配方法可求图像的顶点坐标.【详解】解:A、抛物线y=x2+6x﹣8中a=1>0,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣8,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×(-8)>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.【点睛】本题主要考查的是二次函数的开口,与y轴x轴的交点,对称轴等基本性质,掌握二次函数的基本性质是解题的关键.2、C【解析】分析:根据函数图象的上下关系,结合交点的横坐标找出不等式y1<y1的解集,由此即可得出结论.详解:观察函数图象,发现:
当x<-6或0<x<1时,直线y1=x+1的图象在双曲线y1=的图象的下方,
∴当y1<y1时,x的取值范围是x<-6或0<x<1.
故选C.点睛:考查了反比例函数与一次函数的交点问题,解题的关键是依据函数图象的上下关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据函数图象位置的上下关系结合交点的坐标,找出不等式的解集是关键.3、D【分析】根据调查方式对A进行判断;根据中位数的定义对B进行判断;根据样本容量的定义对C进行判断;通过方差公式计算可对D进行判断.【详解】A.了解飞行员视力的达标率应使用全面调查,所以A选项错误;B.数据3,6,6,7,8,9的中位数为6.5,所以B选项错误;C.从2000名学生中选出200名学生进行抽样调查,样本容量为200,所以C选项错误;D.一组数据1,2,3,4,5的方差是2,所以D选项正确故选D.【点睛】本题考查了方差,方差公式是:,也考查了统计的有关概念.4、C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=﹣3x1向左平移1个单位所得直线解析式为:y=﹣3(x+1)1;再向下平移1个单位为:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故选C.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5、D【解析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-1x,
x2+1x=0,
x(x+1)=0,
解得:x1=0,x2=-1.
故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.6、A【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点睛】本题考查三角函数的定义,熟记定义是解题的关键.7、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8、A【分析】设PQ与AC交于点O,作⊥于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2.【详解】设与AC交于点O,作⊥于,如图所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四边形PAQC是平行四边形,
∴,∵⊥,∠ACB=45,∴,当与重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值故选:A.【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.9、B【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形故选:B.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【分析】根据圆锥的侧面积,代入数进行计算即可.【详解】解:圆锥的侧面积2π×1×1=1π.故选:B.【点睛】本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.11、B【分析】根据平行线分线段成比例的性质逐一分析即可得出结果.【详解】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD,则,所以B选项的结论错误;C、由CD∥EF,则,所以C选项的结论正确;D、由AB∥EF,则,所以D选项的结论正确.故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.12、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.二、填空题(每题4分,共24分)13、.【解析】试题分析:列表或画树状图得出所有等可能的情况数,找出舟舟和嘉嘉同坐2号车的情况数,即可求出所求的概率:列表如下:1
2
1
(1,1)
(2,1)
2
(1,2)
(2,2)
∵所有等可能的情况有4种,其中舟舟和嘉嘉同坐2号车的的情况有1种,∴两人同坐3号车的概率P=.考点:1.列表法或树状图法;2.概率.14、【分析】设腰长为x,则正八边形边长2-2x,根据勾股定理列方程,解方程即可求出正八边形的边.【详解】割掉的四个直角三角形都是等腰直角三角形,设腰长为x,则正八边形边长2-2x,,(舍),,.故答案为:.【点睛】本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.15、-1【分析】根据反比例函数的定义可求出m的值.【详解】解:∵函数是反比例函数∴解得,.故答案为:-1.【点睛】本题考查的知识点是反比例函数的定义,比较基础,易于掌握.16、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.17、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.18、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.三、解答题(共78分)19、,.【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法.详解:方法一:移项,得,二次项系数化为1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x−1)(2x−1)=0,解得:,.点睛:考查解一元二次方程,常见的方法有:直接开方法,配方法,公式法和因式分解法,观察题目选择合适的方法.20、(1)中心;(2)如图,线段FI为此光源下所形成的影子.见解析【分析】(1)根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;(2)如图(见解析),先通过AB、CD的影子确认光源O的位置,再作立柱EF在光源O下的投影即可.【详解】(1)由中心投影的定义得:此光线下形成的投影是:中心投影故答案为:中心;(2)如图,连接GA、HC,并延长相交于点O,则点O就是光源,再连接OE,并延长与地面相交,交点为I,则FI为立柱EF在此光源下所形成的影子.【点睛】本题考查了中心投影的定义,根据已知立柱的影子确认光源的位置是解题关键.21、AD=1.【解析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.解Rt△AEB,得出BE=AB•cos∠ABE=,AE=,那么AF=AE-EF=.再证明∠ABC+∠ADF=90°,根据互余角的互余函数相等得出sin∠ADF=cos∠ABC=.解Rt△ADF,即可求出AD==1.【详解】解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°-∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=2.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE=,∴AF=AE-EF=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD=.【点睛】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sin∠ADF=是解题的关键.22、(1)14;(2).【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出、的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为=46+=20n,∵这11个数字之和是20的整数倍,2<<18∴当n=3时,即;(2)∵、的可能值为9和5,8和6,7和7,6和8,5和9,∴小王一次拨对小李手机号码的概率【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式.23、(1);(2).【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意的半径为2,求出OC=CD=2,根据勾股定理求出BD即可.【详解】解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,的半径为2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.24、(1)5a2+3ab;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)当a=3,b=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各岗位劳务合同范本
- 发布公告合同范本
- 减除合同范本
- 农村地基转租合同范本
- 口罩材料转让合同范本
- 借款和欠款合同范本
- 书刊发行合同范本
- 打桩工程合同范本
- 五轴数控系统加工编程与操作 课件 项目五-五轴联动加工旋转刀具中心点手动编程V3
- 矿山工程开采合同范本
- 2023年山东铝业职业学院单招综合素质题库及答案解析
- 【人教版二年级下册数学】全册课时巩固提升练习和单元巩固提升练习
- GB/T 2007.1-1987散装矿产品取样、制样通则手工取样方法
- 交流课:资本主义世界市场的形成
- 城市社会学(2015)课件
- 年产2万吨马来酸二乙酯技改建设项目环评报告书
- 中国古代文论教程完整版课件
- 中班美工区角活动教案10篇
- SJG 103-2021 无障碍设计标准-高清现行
- 皇冠假日酒店智能化系统安装工程施工合同范本
- 路面工程重点、关键、和难点工程的施工方案(技术标)
评论
0/150
提交评论