2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题含解析_第1页
2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题含解析_第2页
2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题含解析_第3页
2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题含解析_第4页
2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年内蒙古自治区呼和浩特市回民区数学九上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x﹣1)=42C.x(x+1)=21 D.x(x+1)=422.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是()A.m<0 B.m>0 C.m< D.m>3.已知关于x的一元二次方程有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣14.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm5.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是A. B. C. D.6.在中,,,则()A.60° B.90° C.120° D.135°7.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.8.如图,边长为的正方形的对角线与交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕交于点,则()A. B. C. D.9.设A(﹣2,y1)、B(1,y2)、C(2,y3)是双曲线上的三点,则()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y210.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.711.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.1π﹣ B.1π﹣9 C.12π﹣ D.12.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°二、填空题(每题4分,共24分)13.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.14.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.15.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)16.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.17.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.18.如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为_____.三、解答题(共78分)19.(8分)如图①,在平行四边形中,以O为圆心,为半径的圆与相切于点B,与相交于点D.(1)求的度数.(2)如图②,点E在上,连结与交于点F,若,求的度数.20.(8分)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.21.(8分)有一个人患了流感,经过两轮传染后共有81人患了流感.每轮传染中平均一个人传染了几个人?按照这样的速度传染,第三轮将又有多少人被传染?22.(10分)关于的一元二次方程有两个实数根,求的取值范围.23.(10分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.24.(10分)对于平面直角坐标系中的点和半径为1的,定义如下:①点的“派生点”为;②若上存在两个点,使得,则称点为的“伴侣点”.应用:已知点(1)点的派生点坐标为________;在点中,的“伴侣点”是________;(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值.25.(12分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?26.如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.

参考答案一、选择题(每题4分,共48分)1、B【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:x(x-1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【详解】设这次有x队参加比赛,则此次比赛的总场数为x(x−1)场,根据题意列出方程得:x(x−1)=21,整理,得:x(x−1)=42,故答案为x(x−1)=42.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.2、D【解析】试题解析:根据题意,在反比例函数y=的图象上,当x1<x2<0时,y1<y2,故可知该函数在第二象限时,y随x的增大而增大,即1-2m<0,解得,m>.故选D.3、D【详解】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D.4、C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为cm.故选C.5、A【解析】试题分析:解得,∴较小根为.∵,∴.故选A.6、C【分析】首先根据特殊角的三角函数值求出∠C,∠A的度数,然后根据三角形的内角和公式求出∠B的大小.【详解】∵,,∴∠C=30°,∠A=30°,∴∠B=180°﹣30°﹣30°=120°.故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及三角形的内角和公式.7、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.8、D【分析】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,根据正方形的性质得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根据折叠的性质得到∠EDF=∠CDF,设OM=PM=x,根据相似三角形的性质即可得到结论.【详解】过点M作MP⊥CD垂足为P,过点O作OQ⊥CD垂足为Q,∵正方形的边长为,∴OD=1,OC=1,OQ=DQ=,由折叠可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,设OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故选D【点睛】此题考查正方形的性质,折叠的性质,相似三角形的性质与判定,角平分线的性质,解题关键在于作辅助线9、B【分析】将A、B、C的横坐标代入双曲线,求出对应的横坐标,比较即可.【详解】由题意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在双曲线上,将代入双曲线中,得∴.故选B.【点睛】本题主要考查了双曲线函数的性质,正确掌握双曲线函数的性质是解题的关键.10、C【解析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故选C.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11、A【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=1,CD=3,从而得到∠CDO=30°,∠COD=10°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-S△COD,进行计算即可.【详解】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=1,∴CD=,∴∠CDO=30°,∠COD=10°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣=1π﹣,∴阴影部分的面积为1π﹣.故选A.【点睛】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.记住扇形面积的计算公式.也考查了折叠性质.12、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.二、填空题(每题4分,共24分)13、12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14、1.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据所在的范围解答即可.【详解】因为取一位数时一次就拨对密码的概率为;取两位数时一次就拨对密码的概率为;取三位数时一次就拨对密码的概率为;取四位数时一次就拨对密码的概率为.故一次就拨对的概率小于,密码的位数至少需要1位.故答案为1.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.16、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,,∴AB=2,∠CBA=60°,∴弧AA′=;弧A′A′′=;∴点A经过的路线的长是;故答案为:.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.17、【分析】先利用点A求出直线l的解析式,然后求出以B为圆心,半径为1的圆与直线l相切时点B的坐标,即b的值,从而确定以B为圆心,半径为1的圆与直线l有交点时b的取值范围.【详解】设直线l的解析式为∵动点A(m+2,3m+4)在直线l上,将点A代入直线解析式中得解得∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC=若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为或∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为【点睛】本题主要考查直线与圆的位置关系,掌握锐角三角函数是解题的关键.18、4【分析】如图,连接OC交BD于K.设DE=k.BE=4k,则DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK•EB,求出k即可解决问题.【详解】解:如图,连接OC交BD于K.∵,∴OC⊥BD,∵BE=4DE,∴可以假设DE=k.BE=4k,则DK=BK=2.5k,EK=1.5k,∵AB是直径,∴∠ADK=∠DKC=∠ACB=90°,∴AD∥CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK•EB,∴36=1.5k×4k,∵k>0,∴k=,∴BC===2,∴AB===4.故答案为:4.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题(共78分)19、(1);(2).【分析】(1)根据题意连接,利用圆的切线定理和平行四边形性质以及等腰直角三角形性质进行综合分析求解;(2)根据题意连接,,过点O作于点H,证明是等腰直角三角形,利用三角函数值进行分析求解即可.【详解】解:(1)连接,如下图,∵是圆的切线,∴,,∵四边形是平行四边形,∴,,∴,又,∴是等腰直角三角形,∴,∴,∴;(2)连接,,过点O作于点H,如下图,∵,∴,∵,∴也是等腰直角三角形,∵,∴,∴,∴,∴.【点睛】本题考查圆的综合问题,熟练掌握切线和平行四边形的性质以及等腰直角三角形性质是解题的关键.20、(1)蚂蚁爬行的最短路程为1;(2)最短路程为;(3)蚂蚁爬行的最短距离为【分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4;(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.【详解】(1)由题意可知:在中,即蚂蚁爬行的最短路程为1.(2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径,则由题意得:即是等边三角形最短路程为(3)如图③所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程.在Rt△ACP中,∵∠P=60°,∴∠PAC=30°∴PC=PA=×4=2∴AC==蚂蚁爬行的最短距离为【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质,掌握相关公式和性质定理是本题的解题关键.21、(1)8人;(2)648人.【分析】(1)设每轮传染中平均一个人传染了x个人,根据人患了流感,经过两轮传染后共有81人患了流感,列方程求解;(2)根据(1)中所求数据,进而得到第三轮被传染的人数.【详解】解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=﹣10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.【点睛】本题主要考查一元一次方程的实际应用,注意根据题中已知等量关系列出方程式是关键.22、.【分析】根据判别式即可求出的取值范围.【详解】∵,,,方程有两个实数根,∴,∴,∴.【点睛】本题主要考查了根的判别式的应用,解题的关键是熟记根的判别式.23、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【详解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:∵△MAD的面积与△CAD的面积相等,且它们是等底三角形∴点M的纵坐标绝对值跟点C的纵坐标绝对值相等∵点C的纵坐标绝对值为:∴点M的纵坐标绝对值为:∴点M的纵坐标为:当点M的纵坐标为时,则解得:或(即点C,舍去)∴点的坐标为:当点M的纵坐标为时,则解得:∴点的坐标为:,点的坐标为:∴点M的坐标为:或或;(3)存在,分两种情况:①如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(-2,0).②如图,当BC为梯形的腰时,过点C作CP//AB,与抛物线交于点P,∵点C,B关于抛物线对称,∴B(2,-3)设直线AB的解析式为,则,解得.∴直线AB的解析式为.∵CP//AB,∴可设直线CP的解析式为.∵点C在直线CP上,∴.∴直线CP的解析式为.联立,解得,∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.24、(1)(1,0),E、D、;(2);(3)【分析】(1)根据定义即可得到点的坐标,过点E作的切线EM,连接OM,利用三角函数求出∠MEO=30°,即可得到点E是的“伴侣点”;根据点F、D、的坐标得到线段长度与线段OE比较即可判定是否是的“伴侣点”;(2)根据题意求出,∠OGF=60°,由点是的“伴侣点”,过点P作的切线PA、PB,连接OP,OB,证明△OPG是等边三角形,得到点P应在线段PG上,过点P作PH⊥x轴于H,求出点P的横坐标是-,由此即可得到点P的横坐标m的取值范围;(3)设点(x,-2x+6),P(m,n),根据派生点的定义得到3m+n=6,由此得到点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,求出AB的长,再根据面积公式求出OH即可得到答案.【详解】(1)∵,∴点的派生点坐标为(1,0),∵E(0,-2),∴OE=2,过点E作的切线EM,连接OM,∵OM=1,OE=2,∠OME=90°,∴sin∠MEO=,∴∠MEO=30°,而在的左侧也有一个切点,使得组成的角等于30°,∴点E是的“伴侣点”;∵,∴OF=>OE,∴点F不可能是的“伴侣点”;∵,(1,0),,,∴点D、是的“伴侣点”,∴的“伴侣点”有:E、D、,故答案为:(1,0),E、D、;(2)如图,直线l交y轴于点G,∵,∴,∠OGF=60°∵直线上的点是的“伴侣点”,∴过点P作的切线PA、PB,且∠APB=60°,连接OP,OB,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG,∴△OPG是等边三角形,∴若点P是的“伴侣点”,则点P应在线段PG上,过点P作PH⊥x轴于H,∵∠POH=90°-60°=30°,OP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论