版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年济宁市重点中学数学九上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.2.反比例函数与在同一坐标系的图象可能为()A. B. C. D.3.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是()A.一定相似 B.一定全等 C.不一定相似 D.无法判断4.对于二次函数y=﹣2x2,下列结论正确的是()A.y随x的增大而增大 B.图象关于直线x=0对称C.图象开口向上 D.无论x取何值,y的值总是负数5.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣26.如图,已知,直线与直线相交于点,下列结论错误的是()A. B.C. D.7.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.8.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.40m B.80m C.120m D.160m9.函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A. B.C. D.10.如图,在中,,,将绕点按顺时针旋转后得到.此时点在边上,则旋转角的大小为()A. B. C. D.二、填空题(每小题3分,共24分)11.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.12.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.13.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.14.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则______.15.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.16.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.17.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为__________.18.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.三、解答题(共66分)19.(10分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.20.(6分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.21.(6分)已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.(1)求A、B、C三点的坐标;(2)若△PAB的面积为4,求点P的坐标.22.(8分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.23.(8分)解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣4,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1,并写出C1的坐标;(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1.25.(10分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由26.(10分)已知,如图1,在中,,,,若为的中点,交与点.(1)求的长.(2)如图2,点为射线上一动点,连接,线段绕点顺时针旋转交直线与点.①若时,求的长:②如图3,连接交直线与点,当为等腰三角形时,求的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.3、A【分析】根据已知条件可得出,,再结合三角形的内角和定理可得出,从而可判定两三角形一定相似.【详解】解:由已知条件可得,,∵,∴,∵,∴,继而可得出,∴.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.4、B【分析】根据二次函数的性质可判断A、B、C,代入x=0,可判断D.【详解】解:∵a=﹣2<0,b=0,∴二次函数图象开口向下;对称轴为x=0;当x<0时,y随x增大而增大,当x>0时,y随x增大而减小,故A,C错误,B正确,当x=0时,y=0,故D错误,故选:B.【点睛】本题考查了二次函数的图象和性质,熟练掌握基础知识是解题关键.5、D【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.6、B【分析】根据平行线分线段成比例的性质逐一分析即可得出结果.【详解】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD,则,所以B选项的结论错误;C、由CD∥EF,则,所以C选项的结论正确;D、由AB∥EF,则,所以D选项的结论正确.故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.7、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.8、D【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=m.故选D.【点睛】本题考查解直角三角形的应用-仰角俯角问题.9、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致.【详解】解:A.由一次函数的图象可知a>0,b>0,由抛物线图象可知,开口向上,a>0,对称轴x=﹣>0,b<0;两者相矛盾,错误;B.由一次函数的图象可知a>0,b<0,由抛物线图象可知a<0,两者相矛盾,错误;C.由一次函数的图象可知a<0,b>0,由抛物线图象可知a>0,两者相矛盾,错误;D.由一次函数的图象可知a>0,b<0,由抛物线图象可知a>0,对称轴x=﹣>0,b<0;正确.故选D.【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.10、A【分析】根据旋转的性质和三角形的内角和进行角的运算即可得出结果.【详解】解:∵在中,,,∴∠B=59°,∵将绕点按顺时针旋转后得到,∴∠BCD是旋转角,,∴BC=DC,∴∠CDB=∠B=59°,∴∠BCD=180°−∠CDB−∠B=62°,故选A.【点睛】本题考查了旋转的性质和三角形的内角和,解题的关键是找到旋转角并熟练运用旋转的性质求解.二、填空题(每小题3分,共24分)11、1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:=1:1,故答案为:1:1.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12、π【解析】试题分析:∵,∴S阴影===.故答案为.考点:旋转的性质;扇形面积的计算.13、2.1【分析】由条件可证出DE=EC,证明△AED∽△ACB,利用对应边成比例的知识,可求出DE长.【详解】∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,设DE=x,则AE=1﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.1.故答案为:2.1.【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据相似三角形找到对应线段成比例.14、【解析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且,,则,故答案为:.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.15、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、h≤3【解析】试题解析:二次函数的对称轴为:当时,随的增大而增大,对称轴与直线重合或者位于直线的左侧.即:故答案为:点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.当时,随的增大而增大,可知对称轴与直线重合或者位于直线的左侧.根据对称轴为,即可求出的取值范围.17、点C在圆外【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18、y=-(x﹣4)2+1【分析】根据二次函数的顶点式即可求出抛物线的解析式.【详解】解:根据题意,得设抛物线对应的函数式为y=a(x﹣4)2+1把点(0,)代入得:16a+1=解得a=﹣,∴抛物线对应的函数式为y=﹣(x﹣4)2+1故答案为:y=﹣(x﹣4)2+1.【点睛】本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.三、解答题(共66分)19、(1)详见解析;(2).【分析】(1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【详解】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是的中点,∴,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.考点:相似三角形的判定与性质;圆周角定理.20、【分析】设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,由勾股定理得出,解得a=,证明△EDG∽△GCF,得出比例线段,求出CF.则可求出EF.由四边形面积公式可求出答案.【详解】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,∵∠C=90°,∴Rt△BCG中,,∴,∴a=,∴DG=CG=,∴BG=OB+OG=2=3,由折叠可得∠EGD=∠EGO,∠OGF=∠FGC,∴∠EGF=90°,∴∠EGD+∠FGC=90°,∵∠EGD+∠DEG=90°,∴∠FGC=∠DEG,∵∠EDG=∠GCF=90°,∴△EDG∽△GCF,∴,∴.∴CF=1,∴FO=1,∴EF=3,由折叠可得,∴∠BOE=∠A=90°,∵点B,O,G在同一条直线上,点E,O,F在另一条直线上,∴EF⊥BG,∴S四边形EBFG=×BG×EF=×3=.故答案为:.【点睛】本题考查了矩形折叠的性质,相似三角形的判定与性质,直角三角形的性质,勾股定理等知识,熟练掌握折叠的性质是解题的关键21、(1)A(﹣1,0),B(3,0),C(0,3);(2)P点坐标为(1﹣,2),(1+,2)【分析】(1)当时,可求点A,点B坐标,当,可求点C坐标;(2)设点P的纵坐标为,利用三角形面积公式可求得,代入y=﹣x2+2x+3即可求得点P的横坐标,从而求得答案.【详解】(1)对于抛物线y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得:x1=﹣1,x2=3,则A(﹣1,0),B(3,0),令,得到y=﹣x2+2x+3=3,则C点坐标为(0,3);故答案为:A(﹣1,0),B(3,0),(0,3);(2)设点P的纵坐标为,∵点P为抛物线上位于x轴上方,∴,∵△PAB的面积为4,∴,解得:,∵点P为抛物线上的点,将代入y=﹣x2+2x+3得:﹣x2+2x+3=2,整理得x2﹣2x﹣1=0,解得:x1=1﹣,x2=1+,∴P点坐标为:(1﹣,2),(1+,2).【点睛】本题考查了二次函数的解析式的运用,利用二次函数的性质求解是关键.22、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=9,然后解方程得到满足条件的k的值.【详解】(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【点睛】本题主要考查了反比例函数的图象与性质,掌握反比例函数k的几何意义是解题的关键.23、(1);(2)【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x2+x-6=1;∴(2)2(x-1)2-8=1.∴【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.24、(1)见解析,(1,3);(1)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(1)分别作出点A、B绕C点顺时针旋转90°后得到的对应点,再首尾顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,3);(1)如图所示,△A1B1C1即为所求.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人事合同终止协议书样本
- 与建筑公司签订的建筑合同文件模板
- 买卖合同样本简单格式
- 二手摩托车买卖合同范本
- 上海市保障性住房买卖合同示例
- 个人消费借款抵押担保合同
- 交通事故责任划分合同协议
- 个人资产转让合同范例
- 交通银行外汇融资合同样本
- 中小学学生校园意外伤害赔偿合同范本
- 内燃机车钳工(中级)职业鉴定理论考试题及答案
- 长期处方管理规范-学习课件
- 高中英语外研版 单词表 选择性必修3
- 2024年人教版小学六年级数学(上册)期末试卷附答案
- 2024-2025学年江苏省南京鼓楼区五校联考中考模拟物理试题含解析
- 标准作文稿纸模板(A4纸)
- 中小学校园突发事件应急与急救处理课件
- 2024年山东省普通高中学业水平等级考试生物真题试卷(含答案)
- 2024年青海省西宁市选调生考试(公共基础知识)综合能力题库汇编
- 2024年湖南高速铁路职业技术学院单招职业技能测试题库及答案解析
- 广州绿色金融发展现状及对策的研究
评论
0/150
提交评论