2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题含解析_第1页
2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题含解析_第2页
2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题含解析_第3页
2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题含解析_第4页
2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河南省商丘柘城县联考九年级数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根2.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.103.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④ B.①②③ C.①③④ D.②③④4.如图,△ABC的顶点在网格的格点上,则tanA的值为()A. B. C. D.5.如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为()A. B. C. D.6.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. B. C. D.7.如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为;②;③当时,y随x的增大而增大;④当时,,其中正确命题的个数是()A.1 B.2 C.3 D.48.用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍9.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.210.如图,如果从半径为6cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.2cm B.4cm C.6cm D.8cm二、填空题(每小题3分,共24分)11.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是.12.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.13.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.14.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是_____.15.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为__________.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.已知:,则的值是_______.18.时钟的时针不停地旋转,从上午时到上午时,时针旋转的旋转角是__________度.三、解答题(共66分)19.(10分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.20.(6分)已知,是一元二次方程的两个实数根,且,抛物线的图象经过点,,如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与轴的另一个交点为,抛物线的顶点为,试求出点,的坐标,并判断的形状;(3)点是直线上的一个动点(点不与点和点重合),过点作轴的垂线,交抛物线于点,点在直线上,距离点为个单位长度,设点的横坐标为,的面积为,求出与之间的函数关系式.21.(6分)如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.22.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.23.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.24.(8分)在平面直角坐标系xOy中,抛物线与y轴交于点A.(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,.若抛物线与线段PQ恰有两个公共点,结合函数图象,求a的取值范围.25.(10分)已知二次函数.(1)当时,求函数图象与轴的交点坐标;(2)若函数图象的对称轴与原点的距离为2,求的值.26.(10分)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:利用根的判别式进行判断.解:∵∴此方程无实数根.故选C.2、B【解析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3个单位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.3、C【分析】根据抛物线的性质和平移,以及一动点到两定点距离之和最小问题的处理方法,对选项进行逐一分析即可.【详解】①抛物线的顶点,则抛物线与直线y=3有且只有一个交点,正确,符合题意;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1<y3<y2,故错误,不符合题意;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,正确,符合题意;④点A关于x轴的对称点,连接A′B交x轴于点D,则点D为所求,距离最小值为BD′==,正确,符合题意;故选:C.【点睛】本题考查抛物线的性质、平移和距离的最值问题,其中一动点到两定点距离之和最小问题比较巧妙,属综合中档题.4、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【详解】解:如图作CD⊥AB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5、D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得出【详解】切线性质得到故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键6、B【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.7、B【分析】①根据二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式即可得;②根据时,即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x轴的另一个交点坐标,再结合函数图象即可得.【详解】由二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式得:,即二次函数的最大值为,则命题①正确;二次函数的图象与x轴的一个交点为,,则命题②错误;由二次函数的图象可知,当时,y随x的增大而减小,则命题③错误;设二次函数的图象与x轴的另一个交点为,二次函数的对称轴为,与x轴的一个交点为,,解得,即二次函数的图象与x轴的另一个交点为,由二次函数的图象可知,当时,,则命题④正确;综上,正确命题的个数是2,故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.8、A【解析】试题分析:用一个4倍放大镜照△ABC,放大后与原三角形相似且相似比为1:4,相似三角形对应角相等,对应边的比等于相似比、对应周长的比等于相似比,面积比等于相似比的平方,故A选项错误.故选A.考点:相似三角形的性质.9、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.10、B【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长=,∴圆锥的底面半径cm;故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.二、填空题(每小题3分,共24分)11、6米.【解析】试题分析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.试题解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考点:解直角三角形的应用.12、5cm【分析】先求出BF、CF的长,利用勾股定理列出关于EF的方程,即可解决问题.【详解】∵四边形ABCD为矩形,∴∠B=∠C=90°;由题意得:AF=AD=BC=10,ED=EF,设EF=x,则EC=8−x;由勾股定理得:BF2=AF2−AB2=36,∴BF=6,CF=10−6=4;由勾股定理得:x2=42+(8−x)2,解得:x=5,故答案为:5cm.【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.13、或【分析】分两种情形:如图1中,当时.如图2中,当时,分别求解即可.【详解】解:在中,,,,,,,∴,∴.若△CEG是直角三角形,有两种情况:I.如图1中,当时.∴,作于.则,在中,,,.II.如图2中,当时,∵,∴,∴,∴,此时点与点重合,∴,∴,∴,综上所述,的长为或.故答案为:或.【点睛】本题考查了翻折变换,直角三角形性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14、点O在⊙P上【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.【点睛】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15、(1,2)【分析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,结合题中是在第一象限内进行变换进一步求解即可.【详解】由题意得:在第一象限内,以原点为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为A(2×,4×),即(1,2).故答案为:(1,2).【点睛】本题主要考查了直角坐标系中位似图形的变换,熟练掌握相关方法是解题关键.16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k≠0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.18、【分析】先计算时钟钟面上每两个数字之间的度数,从上午时到上午时共旋转4个格,即可求得答案.【详解】钟面上每两个数字间的度数为,∵从上午时到上午时共旋转4个格,∴,故答案为:120.【点睛】此题考查钟面的度数计算,确定钟面上每两个数字事件的度数是解题的关键.三、解答题(共66分)19、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.20、(1);(2),,是直角三角形;(3)当时,,当或时,.【分析】(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与轴的交点,再判断出和都是等腰直角三角形,从而得到结论;(3)先求出,再分两种情况,当点在点上方和下方,分别计算即可.【详解】解(1),,,,是一元二次方程的两个实数根,且,,,抛物线的图象经过点,,,,抛物线解析式为,(2)令,则,,,,,顶点坐标,过点作轴,,,和都是等腰直角三角形,,,是直角三角形;(3)如图,,,直线解析式为,点的横坐标为,轴,点的横坐标为,点在直线上,点在抛物线上,,,过点作,是等腰直角三角形,,,当点在点上方时,即时,,,如图3,当点在点下方时,即或时,,.综上所述:当点在点上方时,即时,,当点在点下方时,即或时,.【点睛】此题是二次函数综合题,主要考查了一元二次方程的解法,待定系数法求函数解析式,等腰直角三角形的性质和判定,解本题的关键是利用等腰直角三角形判定和性质求出,.21、(1)b=1,c=6;(2)0<m<2或m<-1;(2)-1<m≤1且m≠0,(3)m的值为:或或或.【分析】(1)求出A、点B的坐标代入二次函数表达式即可求解;

(2)当0<m<2时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,同样,当m<-1,此时,N点也在直线AB上即可求解;

(2)当-1<m<2且m≠0时,PQ=-m2+m+6-(-m+2)=-m2+2m+2,c=3PQ=-3m2+8m+12即可求解;

(3)分-1<m≤2、m≤-1,两种情况求解即可.【详解】(1)把y=0代入y=-x+2,得x=2.

∴点A的坐标为(0,2),

把x=-1代入y=-x+2,得y=3.

∴点B的坐标为(-1,3),

把(0,2)、(-1,3)代入y=-x2+bx+c,

解得:b=1,c=6;

(2)当0<m<2时,

以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,

同样,当m<-1,此时,N点也在直线AB上,

故:m的取值范围为:0<m<2或m<-1;

(2)当-1<m<2且m≠0时,

PQ=-m2+m+6-(-m+2)=-m2+2m+2,

∴c=3PQ=-3m2+8m+12;

c随m增大而增大时m的取值范围为-1<m≤1且m≠0,

(3)点P(m,-m2+m+6),则Q(m,-m+2),

①当-1<m≤2时,

当△PQM与y轴只有1个公共点时,PQ=xP,

即:-m2+m+6+m-2=m,

解得:(舍去负值);②当m≤-1时,

△PQM与y轴只有1个公共点时,PQ=-xQ,

即-m+2+m2-m-6=-m,整理得:m2-m-2=0,

解得:(舍去正值),

③m>2时,

同理可得:(舍去负值);

④当-1<m<0时,

PQ=-m,

解得:故m的值为:或或或.【点睛】此题考查了待定系数法求解析式,还考查了三角形和正方形相关知识,本题解题的关键是通过画图确定正方形或三角形所在的位置,此题难度较大.22、(1)答案见解析;(2).【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.23、(1)证明见解析;(2)2;(3).【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【详解】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点∴OH是△ABC的中位线∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB又∵OB=OM,∴∠OMB=∠MBO∴∠COH=∠MOH,在△COH与△MOH中,∵OC=OM,∠COH=∠MOH,OH=OH∴△COH≌△MOH(SAS)∴∠HCO=∠HMO=90°∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线∴HC=MH=∴AC=2HC=3∵tan∠ABC=,∴=∴BC=4∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I∵AC与AN都是⊙O的切线∴AC=AN,AO平分∠CAD∴AO⊥CN∵AC=3,OC=2∴由勾股定理可求得:AO=∵AC•OC=AO•CI,∴CI=∴由垂径定理可求得:CN=设OE=x,由勾股定理可得:∴,∴x=,∴CE=,由勾股定理可求得:EN=,∴由垂径定理可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论